Skip to main content

Adaptive Compressed Wideband Spectrum Sensing Based on Radio Environment Map Dedicated for Space Information Networks

  • Conference paper
  • First Online:
Wireless and Satellite Systems (WiSATS 2019)

Abstract

Spectrum sensing is the basis of dynamic spectrum access and sharing for space information networks consisting of various satellite and terrestrial networks. The traditional spectrum sensing method, guided by the Nyquist-Shannon sampling theorem, might not be suitable for the emerging communication systems such as the fifth-generation mobile communications (5G) and space information networks utilizing spectrum from sub-6 GHz up to 100 GHz to offer ubiquitous broadband applications. In contrast, compressed spectrum sensing can not only relax the requirements on hardware and software, but also reduce the energy consumption and processing latency. As for the compressed measurement (low-speed sampling) process of the existing compressed spectrum sensing algorithms, the compression ratio is usually set to a fixed value, which limits their adaptability to the dynamically changing radio environment with different sparseness. In this paper, an adaptive compressed spectrum sensing algorithm based on radio environment map (REM) dedicated for space information networks is proposed to address this problem. Simulations show that the proposed algorithm has better adaptability to the varying environment than the existing compressed spectrum sensing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu, Q., Wang, J., Bai, L.: Architecture and critical technologies of space information networks. J. Commun. Inf. Netw. 1(3), 1–9 (2016)

    Article  Google Scholar 

  2. Sun, H., Chiu, W.Y., et al.: Adaptive compressed spectrum sensing for wideband cognitive radios. IEEE Commun. Lett. 16(11), 1812–1815 (2013)

    Article  Google Scholar 

  3. ADC12DJ3200 12-Bit, Dual 3.2-GSPS or Single 6.4-GSPS, RF-sampling analog-to-digital converter (ADC). http://www.ti.com/product/ADC12DJ3200. Accessed 07 Oct 2018

  4. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  5. Candès, E.J., Romberg, J., et al.: Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  Google Scholar 

  6. Elad, M.: Optimized projections for compressed sensing. IEEE Trans. Signal Process. 55(12), 5695–5702 (2006)

    Article  MathSciNet  Google Scholar 

  7. Tian, Z., Giannakis, G.B.: Compressed sensing for wideband cognitive radios. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI, pp. IV-1357–IV-1360 (2007)

    Google Scholar 

  8. Polo, Y.L., Wang, Y., et al.: Compressive wide-band spectrum sensing. In: 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, pp. 2337–2340 (2009)

    Google Scholar 

  9. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization. Proc. Natl. Acad. Sci. U.S.A. 100(5), 2197–2202 (2003)

    Article  MathSciNet  Google Scholar 

  10. Fette, B.: Cognitive Radio Technology. Elsevier (2006)

    Google Scholar 

  11. Do, T.T., Gan, L., Nguyen, N., et al.: Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In: 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, pp. 581–587 (2009)

    Google Scholar 

  12. Wang, Y., Lu, Z.: Coordinated resource allocation for satellite-terrestrial coexistence based on radio maps. China Commun. 15(3), 149–156 (2018)

    Article  Google Scholar 

  13. Zhao, Y., Le, B., Reed, J.H.: Network support – the radio environment map. In: Fette, B. (ed.) Cognitive Radio Technology, chap. 11, pp. 337–363. Elsevier (2006)

    Google Scholar 

  14. Zhao, Y., Morales, L., Gaeddert, J., Bae, K.K., Um, J., Reed, J.H.: Applying radio environment map to cognitive wireless regional area networks. In: Proceedings of the Second IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN 2007), Dublin, Ireland, pp. 115–118 (2007)

    Google Scholar 

  15. Li, J., Zhao, Y.: Radio environment map-based cognitive Doppler spread compensation algorithms for high-speed rail broadband mobile communications. EURASIP J. Wirel. Commun. Netw. 1, 1–18 (2012). https://doi.org/10.1186/1687-1499-2012-263

    Article  Google Scholar 

  16. McHenry, M., Zhao, Y., Haddadin, O.: Dynamic spectrum access radio performance for UAS ISR missions. In: Proceedings of IEEE MILCOM 2010, San Jose, California, pp. 2446–2451 (2010)

    Google Scholar 

  17. Mitola III, J., Maguire Jr., G.Q.: Cognitive radio: making software radios more personal. IEEE Pers. Commun. 6(4), 13–18 (1999)

    Article  Google Scholar 

  18. Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005)

    Article  Google Scholar 

  19. Yilmaz, H.B., Tugcu, T., Alagöz, F., Bayhan, S.: Radio environment map as enabler for practical cognitive radio networks. IEEE Commun. Mag. 51(12), 162–169 (2013)

    Article  Google Scholar 

  20. Candès, E.J.: The restricted isometry property and its implications for compressed sensing. C.R. Math. 346(9–10), 589–592 (2008)

    Article  MathSciNet  Google Scholar 

  21. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)

    Article  MathSciNet  Google Scholar 

  22. Cai, T.T., Wang, L.: Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 57(7), 4680–4688 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Beijing Natural Science Foundation (4172046) and the Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (Guilin University of Electronic Technology, CRKL150203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youping Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, X., Zhao, Y., Chen, H. (2019). Adaptive Compressed Wideband Spectrum Sensing Based on Radio Environment Map Dedicated for Space Information Networks. In: Jia, M., Guo, Q., Meng, W. (eds) Wireless and Satellite Systems. WiSATS 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 280. Springer, Cham. https://doi.org/10.1007/978-3-030-19153-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19153-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19152-8

  • Online ISBN: 978-3-030-19153-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics