Skip to main content

Lower Bounds for Uniform Machine Scheduling Using Decision Diagrams

  • Conference paper
  • First Online:
Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

We propose a relaxed decision diagram (DD) formulation for obtaining lower bounds on uniform machine scheduling instances, based on separators to separate jobs on different machines. Experiments on the total tardiness for instances with tight due times show that for obtaining nontrivial bounds, it is important to partition the DD nodes on a layer based on their machine finishing time. When the number of jobs is small, DDs provide stronger bounds in less time than a time-indexed LP relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use a slightly simpler definition, where \(L \subseteq \mathcal {J}\).

References

  1. Balakrishnan, N., Kanet, J.J., Sridharan, V.: Early/tardy scheduling with sequence dependent setups on uniform parallel machines. Comput. Oper. Res. 26(2), 127–141 (1999)

    Article  MathSciNet  Google Scholar 

  2. Baptiste, P., Jouglet, A., Savourey, D.: Lower bounds for parallel machine scheduling problems. Int. J. Oper. Res. 3(6), 643–664 (2008)

    Article  MathSciNet  Google Scholar 

  3. Beasley, J.E.: Weighted tardiness (OR library) (2018). http://people.brunel.ac.uk/~mastjjb/jeb/orlib/wtinfo.html, originally described in [4]. Accessed 26 Feb 2018

  4. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  5. Beck, J.C., Prosser, P., Selensky, E.: Vehicle routing and job shop scheduling: what’s the difference? In: ICAPS, pp. 267–276 (2003)

    Google Scholar 

  6. Berghman, L., Spieksma, F., T’Kindt, V.: Solving a time-indexed formulation by preprocessing and cutting planes (2014). https://doi.org/10.2139/ssrn.2437371, Available at SSRN (First appeared as extended abstract in the 6th Multidisciplinary International Scheduling Conference: Theory & Applications)

  7. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.: Decision Diagrams for Optimization. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42849-9

    Book  MATH  Google Scholar 

  8. Bergman, D., Cire, A.A., van Hoeve, W.J., Hooker, J.N.: Discrete optimization with decision diagrams. INFORMS J. Comput. 28(1), 47–66 (2016)

    Article  MathSciNet  Google Scholar 

  9. van den Bogaerdt, P., de Weerdt, M.M.: Multi-machine scheduling lower bounds using decision diagrams. Oper. Res. Lett. 46(6), 616–621 (2018)

    Article  MathSciNet  Google Scholar 

  10. Cire, A.A., Van Hoeve, W.J.: Multivalued decision diagrams for sequencing problems. Oper. Res. 61(6), 1411–1428 (2013)

    Article  MathSciNet  Google Scholar 

  11. Driessel, R., Mönch, L.: Variable neighborhood search approaches for scheduling jobs on parallel machines with sequence-dependent setup times, precedence constraints, and ready times. Comput. Ind. Eng. 61(2), 336–345 (2011)

    Article  Google Scholar 

  12. Hooker, J.N.: Job sequencing bounds from decision diagrams. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 565–578. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_36

    Chapter  Google Scholar 

  13. Jain, V., Grossmann, I.E.: Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS J. Comput. 13(4), 258–276 (2001)

    Article  MathSciNet  Google Scholar 

  14. Jordan, C.: Batching and Scheduling: Models and Methods for Several Problem Classes. Lecture Notes in Economics and Mathematical Systems, vol. 437. Springer, Heidelberg (1996). https://doi.org/10.1007/978-3-642-48403-2

    Book  MATH  Google Scholar 

  15. Lenstra, J.K., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems. Ann. Discrete Math. 1, 343–362 (1977)

    Article  MathSciNet  Google Scholar 

  16. Lin, Y.K., Hsieh, F.Y.: Unrelated parallel machine scheduling with setup times and ready times. Int. J. Prod. Res. 52(4), 1200–1214 (2014)

    Article  Google Scholar 

  17. Pinedo, M.L.: Scheduling: Theory, Algorithms, and Systems, 4th edn. Springer, New York (2016). https://doi.org/10.1007/978-3-319-26580-3

    Book  MATH  Google Scholar 

  18. Rodrigues, R., Pessoa, A., Uchoa, E., Poggi de Aragão, M.: Heuristic algorithm for the parallel machine total weighted tardiness scheduling problem. Relat. Pesquisa Engenh. Produçao 8(10), 1–11 (2008)

    Google Scholar 

  19. Schutten, J.M.J.: List scheduling revisited. Oper. Res. Lett. 18(4), 167–170 (1996)

    Article  Google Scholar 

  20. Van Hoeve, W.J.: Decision diagrams for sequencing and scheduling (2016). http://icaps16.icaps-conference.org/proceedings/tutorials/tutorial5.pdf, Tutorial ICAPS 2016. Accessed 8 Nov 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pim van den Bogaerdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

van den Bogaerdt, P., de Weerdt, M. (2019). Lower Bounds for Uniform Machine Scheduling Using Decision Diagrams. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics