Skip to main content

On the Existence of Synergies and the Separability of Closed Reaction Networks

  • Conference paper
  • First Online:
Molecular Logic and Computational Synthetic Biology (MLCSB 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11415))

Abstract

It is well known that closure is a necessary topological property for a reaction network to be dynamically stable. In this work we combine notions of chemical organization theory with structural properties of reaction networks to distill a minimal set of closed reaction networks that encodes the non-trivial stable dynamical regimes of the network. In particular, these non-trivial closed sets are synergetic, in the sense that their dynamics cannot always be computed from the dynamics of its closed constituents. We introduce a notion of separability for reaction networks and prove that it is strictly related to the notion of synergy. In particular, we provide a characterization of the non-trivial closed reaction networks by means of their degree of internal synergy. The less trivial the dynamics of the reaction network, the less can be separated into constituents, and equivalently the more synergies the reaction network has. We also discuss the computational and analytical benefits of this new representation of the dynamical structure of a reaction network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Those in \({\mathcal {R}}_{X\cup \text {prod}({\mathcal {R}}_X)}\).

  2. 2.

    The algorithm presented in [18] is employed to build a restricted form of closed sets, called organizations, for specific class of reaction networks, known as flow systems, in which organizations have a lattice structure.

  3. 3.

    In the sense that none of the reactions in the network is assigned with a zero value in the process.

References

  1. Centler, F., di Fenizio, P.S., Matsumaru, N., Dittrich, P.: Chemical organizations in the central sugar metabolism of Escherichia Coli. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G., Herzel, H. (eds.) Mathematical Modeling of Biological Systems, Volume I. MSSET, pp. 105–119. Birkhäuser, Boston (2007). https://doi.org/10.1007/978-0-8176-4558-8_10

  2. Centler, F., Kaleta, C., di Fenizio, P.S., Dittrich, P.: Computing chemical organizations in biological networks. Bioinformatics 24(14), 1611–1618 (2008)

    Article  Google Scholar 

  3. Centler, F., Kaleta, C., Speroni di Fenizio, P., Dittrich, P.: A parallel algorithm to compute chemical organizations in biological networks. Bioinformatics 26(14), 1788–1789 (2010)

    Article  Google Scholar 

  4. Dittrich, P., Winter, L.: Chemical organizations in a toy model of the political system. Adv. Complex Syst. 11(04), 609–627 (2008)

    Article  Google Scholar 

  5. Dittrich, P., Di Fenizio, P.S.: Chemical organisation theory. Bull. Math. Biol. 69(4), 1199–1231 (2007)

    Article  MathSciNet  Google Scholar 

  6. Garg, V.K.: Introduction to Lattice Theory with Computer Science Applications. Wiley, Hoboken (2015)

    Book  Google Scholar 

  7. Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47(2), 81–116 (1972)

    Article  MathSciNet  Google Scholar 

  8. Kreyssig, P., Escuela, G., Reynaert, B., Veloz, T., Ibrahim, B., Dittrich, P.: Cycles and the qualitative evolution of chemical systems. PLoS ONE 7(10), e45772 (2012)

    Article  Google Scholar 

  9. Kreyssig, P., Wozar, C., Peter, S., Veloz, T., Ibrahim, B., Dittrich, P.: Effects of small particle numbers on long-term behaviour in discrete biochemical systems. Bioinformatics 30(17), i475–i481 (2014)

    Article  Google Scholar 

  10. Matsumaru, N., Centler, F., di Fenizio, P.S., Dittrich, P.: Chemical organization theory applied to virus dynamics (Theorie chemischer organisationen angewendet auf infektionsmodelle). Inf. Technol. 48(3), 154–160 (2006)

    Google Scholar 

  11. Matsumaru, N., Centler, F., di Fenizio, P.S., Dittrich, P.: Chemical organization theory as a theoretical base for chemical computing. In: Proceedings of the 2005 Workshop on Unconventional Computing: From Cellular Automata to Wetware, pp. 75–88. Luniver Press (2005)

    Google Scholar 

  12. Matsumaru, N., Lenser, T., Hinze, T., Dittrich, P.: Toward organization-oriented chemical programming: a case study with the maximal independent set problem. In: Dressler, F., Carreras, I. (eds.) Advances in Biologically Inspired Information Systems. SCI, vol. 69, pp. 147–163. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72693-7_8

    Chapter  MATH  Google Scholar 

  13. Peter, S., Veloz, T., Dittrich, P.: Feasibility of organizations – a refinement of chemical organization theory with application to P systems. In: Gheorghe, M., Hinze, T., Păun, G., Rozenberg, G., Salomaa, A. (eds.) CMC 2010. LNCS, vol. 6501, pp. 325–337. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-18123-8_25

    Chapter  Google Scholar 

  14. Peter, S., Dittrich, P.: On the relation between organizations and limit sets in chemical reaction systems. Adv. Complex Syst. 14(01), 77–96 (2011)

    Article  MathSciNet  Google Scholar 

  15. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in metabolic pathways. In: ISMB, vol. 93, pp. 328–336, July 1993

    Google Scholar 

  16. Schuster, S., Hilgetag, C.: On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2(02), 165–182 (1994)

    Article  Google Scholar 

  17. Schilling, C.H., Schuster, S., Palsson, B.O., Heinrich, R.: Metabolic pathway analysis: basic concepts and scientific applications in the postgenomic era. Biotechnol. Prog. 15(3), 296–303 (1999)

    Article  Google Scholar 

  18. Speroni di Fenizio, P.: The lattice of chemical organisations. In: Artificial Life Conference Proceedings 13, pp. 242–248. MIT Press, Cambridge, July 2015

    Google Scholar 

  19. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press, Boca Raton (2018)

    Book  Google Scholar 

  20. Veloz, T.: A computational study of Algebraic Chemistry (Master’s thesis) (2010)

    Google Scholar 

  21. Veloz, T., Razeto-Barry, P., Dittrich, P., Fajardo, A.: Reaction networks and evolutionary game theory. J. Math. Biol. 68(1–2), 181–206 (2014)

    Article  MathSciNet  Google Scholar 

  22. Veloz, T., Razeto-Barry, P.: Reaction networks as a language for systemic modeling: fundamentals and examples. Systems 5(1), 11 (2017a)

    Article  Google Scholar 

  23. Veloz, T., Razeto-Barry, P.: Reaction networks as a language for systemic modeling: on the study of structural changes. Systems 5(2), 30 (2017b)

    Article  Google Scholar 

  24. Veloz, T., Ramos, R., Maldonado, P., Moisset, P.: Reaction networks as a tool for representing and analyzing ecological networks (2018, in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Veloz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Veloz, T., Bassi, A., Maldonado, P., Razeto, P. (2019). On the Existence of Synergies and the Separability of Closed Reaction Networks. In: Chaves, M., Martins, M. (eds) Molecular Logic and Computational Synthetic Biology. MLCSB 2018. Lecture Notes in Computer Science(), vol 11415. Springer, Cham. https://doi.org/10.1007/978-3-030-19432-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19432-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19431-4

  • Online ISBN: 978-3-030-19432-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics