Abstract
Ontology-mediated query answering is a popular paradigm for enriching answers to user queries with background knowledge. For querying the absence of information, however, there exist only few ontology-based approaches. Moreover, these proposals conflate the closed-domain and closed-world assumption, and therefore are not suited to deal with the anonymous objects that are common in ontological reasoning. We propose a new closed-world semantics for answering conjunctive queries with negation over ontologies formulated in the description logic , which is based on the minimal canonical model. We propose a rewriting strategy for dealing with negated query atoms, which shows that query answering is possible in polynomial time in data complexity.
This work was supported by the DFG grant BA 1122/19-1 (GOASQ) and grant 389792660 (TRR 248) (see https://perspicuous-computing.science).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmetaj, S., Ortiz, M., Simkus, M.: Polynomial datalog rewritings for expressive description logics with closed predicates. In: Kambhampati, S. (ed.) Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 878–885. AAAI Press (2016). https://www.ijcai.org/Abstract/16/129
Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic web. In: Hull, R., Grohe, M. (eds.) Proceedings of the 33rd Symposium on Principles of Database Systems (PODS 2014), pp. 14–26. ACM (2014). https://doi.org/10.1145/2594538.2594555
Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the AMIA Symposium, pp. 17–21. American Medical Informatics Association (2001)
Baader, F., Brandt, S., Lutz, C.: Pushing the \(\cal{EL}\) envelope. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 364–369. Professional Book Center (2005). http://ijcai.org/Proceedings/09/Papers/053.pdf
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)
Bárány, V., ten Cate, B., Otto, M.: Queries with guarded negation. Proc. VLDB Endow. 5(11), 1328–1339 (2012). https://doi.org/10.14778/2350229.2350250
Besana, P., Cuggia, M., Zekri, O., Bourde, A., Burgun, A.: Using semantic web technologies for clinical trial recruitment. In: Patel-Schneider, P.F., et al. (eds.) ISWC 2010. LNCS, vol. 6497, pp. 34–49. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17749-1_3
Bienvenu, M., Ortiz, M.: Ontology-mediated query answering with data-tractable description logics. In: Faber, W., Paschke, A. (eds.) Reasoning Web 2015. LNCS, vol. 9203, pp. 218–307. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21768-0_9
Bonomi, L., Jiang, X.: Patient ranking with temporally annotated data. J. Biomed. Inform. 78, 43–53 (2018). https://doi.org/10.1016/j.jbi.2017.12.007
Calvanese, D., et al.: Ontop: answering SPARQL queries over relational databases. Semant. Web 8, 471–487 (2017)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Epistemic first-order queries over description logic knowledge bases. In: Parsia, B., Sattler, U., Toman, D. (eds.) Proceedings of the 19th International Workshop on Description Logics (DL 2006). CEUR Workshop Proceedings, vol. 189, pp. 51–61 (2006)
Cresswell, K.M., Sheikh, A.: Inpatient clinical information systems. In: Sheikh, A., Cresswell, K.M., Wright, A., Bates, D.W. (eds.) Key Advances in Clinical Informatics, Chap. 2, pp. 13–29. Academic Press (2017). https://doi.org/10.1016/B978-0-12-809523-2.00002-9
Crowe, C.L., Tao, C.: Designing ontology-based patterns for the representation of the time-relevant eligibility criteria of clinical protocols. AMIA Joint Summits Transl. Sci. Proc. 2015, 173–177 (2015). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4525239/
Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo, D. (eds.) Proceedings of the 27th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2008), pp. 149–158. ACM (2008). https://doi.org/10.1145/1376916.1376938
Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query rewriting for horn-\(\cal{SHIQ}\) plus rules. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI 2012), pp. 726–733. AAAI Press (2012). http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4931
Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005). https://doi.org/10.1016/j.tcs.2004.10.033
Gutiérrez-Basulto, V., Ibáñez-García, Y., Kontchakov, R., Kostylev, E.V.: Queries with negation and inequalities over lightweight ontologies. J. Web Semant. 35, 184–202 (2015). https://doi.org/10.1016/j.websem.2015.06.002
Hernich, A., Kupke, C., Lukasiewicz, T., Gottlob, G.: Well-founded semantics for extended datalog and ontological reasoning. In: Hull, R., Fan, W. (eds.) Proceedings of the 32nd Symposium on Principles of Database Systems (PODS 2013), pp. 225–236. ACM (2013). https://doi.org/10.1145/2463664.2465229
Hripcsak, G., Zhou, L., Parsons, S., Das, A.K., Johnson, S.B.: Modeling electronic discharge summaries as a simple temporal constraint satisfaction problem. J. Am. Med. Inform. Assoc. 12(1), 55–63 (2005). https://doi.org/10.1197/jamia.m1623
Johnson, A.E.W., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3(160035), 1–9 (2016). https://doi.org/10.1038/sdata.2016.35
Kharlamov, E., et al.: Ontology based data access in Statoil. Web Semant. 44, 3–36 (2017). https://doi.org/10.1016/j.websem.2017.05.005
Kontchakov, R., Lutz, C., Toman, D., Wolter, F., Zakharyaschev, M.: The combined approach to ontology-based data access. In: Walsh, T. (ed.) Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 2656–2661. AAAI Press (2011). https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-442
Köpcke, F., Prokosch, H.U.: Employing computers for the recruitment into clinical trials: a comprehensive systematic review. J. Med. Internet Res. 16(7), e161 (2014). https://doi.org/10.2196/jmir.3446
Lutz, C., Seylan, I., Wolter, F.: Ontology-based data access with closed predicates is inherently intractable (sometimes). In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI 2013), pp. 1024–1030. AAAI Press (2013). https://www.ijcai.org/Abstract/13/156
Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic \(\cal{EL}\) using a relational database system. In: Boutilier, C. (ed.) Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009), pp. 2070–2075. AAAI Press (2009)
Marnette, B.: Generalized schema mappings: from termination to tractability. In: Paredaens, J., Su, J. (eds.) Proceedings of the 28th Symposium on Principles of Database Systems (PODS 2009), pp. 13–22. ACM (2009). https://doi.org/10.1145/1559795.1559799
Mugnier, M.-L., Thomazo, M.: An introduction to ontology-based query answering with existential rules. In: Koubarakis, M., et al. (eds.) Reasoning Web 2014. LNCS, vol. 8714, pp. 245–278. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10587-1_6
Ni, Y., et al.: Increasing the efficiency of trial-patient matching: Automated clinical trial eligibility pre-screening for pediatric oncology patients. BMC Med. Inform. Decis. Making 15, 1–10 (2015). https://doi.org/10.1186/s12911-015-0149-3
Patel, C., et al.: Matching patient records to clinical trials using ontologies. In: Aberer, K., et al. (eds.) ASWC/ISWC 2007. LNCS, vol. 4825, pp. 816–829. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_59
Savova, G.K., et al.: Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J. Am. Med. Inform. Assoc. 17(5), 507–513 (2010)
Tagaris, A., et al.: Exploiting ontology based search and EHR interoperability to facilitate clinical trial design. In: Koutsouris, D.-D., Lazakidou, A.A. (eds.) Concepts and Trends in Healthcare Information Systems. AIS, vol. 16, pp. 21–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06844-2_3
Wolter, F.: First order common knowledge logics. Studia Logica 65(2), 249–271 (2000). https://doi.org/10.1023/A:1005271815356
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Borgwardt, S., Forkel, W. (2019). Closed-World Semantics for Conjunctive Queries with Negation over \(\mathcal {ELH}_\bot \) Ontologies. In: Calimeri, F., Leone, N., Manna, M. (eds) Logics in Artificial Intelligence. JELIA 2019. Lecture Notes in Computer Science(), vol 11468. Springer, Cham. https://doi.org/10.1007/978-3-030-19570-0_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-19570-0_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19569-4
Online ISBN: 978-3-030-19570-0
eBook Packages: Computer ScienceComputer Science (R0)