Abstract
This paper proposes the computing of isosurfaces as a way to extract relevant features from 3D brain images. These isosurfaces are then used to implement a Computer aided diagnosis system to assist in the diagnosis of Parkinson’s Disease (PD) which uses a most well-known Convolutional Neural Networks (CNN) architecture, LeNet, to classify DaTScan images with an average accuracy of 95.1% and AUC = 97%, obtaining comparable (slightly better) values to those obtained for most of the recently proposed systems. It can be concluded therefore that the computation of isosurfaces reduces the complexity of the inputs significantly, resulting in high classification accuracies with reduced computational burden.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Badoud, S., Ville, D.V.D., Nicastro, N., Garibotto, V., Burkhard, P.R., Haller, S.: Discriminating among degenerative parkinsonisms using advanced 123i-ioflupane SPECT analyses. NeuroImage: Clin. 12, 234–240 (2016)
Bhalchandra, N.A., Prashanth, R., Roy, S.D., Noronha, S.: Early detection of Parkinson’s disease through shape based features from 123I-Ioflupane SPECT imaging. In: 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 963–966, April 2015. https://doi.org/10.1109/ISBI.2015.7164031
Brahim, A., Ramírez, J., Górriz, J., Khedher, L., Salas-Gonzalez, D.: Comparison between different intensity normalization methods in 123I-Ioflupane imaging for the automatic detection of Parkinsonism. PLoS One 10(6: e0130274), 1–20 (2015)
Illán, I.A., Górriz, J.M., Ramírez, J., Segovia, F., Hoyuela, J.M.J., Lozano, S.J.O.: Automatic assistance to Parkinsons disease diagnosis in DaTSCAN SPECT imaging. Med. Phys. 39(10), 5971–5980 (2012). https://doi.org/10.1118/1.4742055
Khedher, L., Ramírez, J., Górriz, J., Brahim, A., Segovia, F.: Early diagnosis of disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing 151, 139–150 (2015). https://doi.org/10.1016/j.neucom.2014.09.072
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, NIPS 2012, vol. 1, pp. 1097–1105. Curran Associates Inc., USA (2012)
LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Martinez-Murcia, F.J., Górriz, J.M., Ramírez, J., Moreno-Caballero, M., Gómez-Río, M.: Parametrization of textural patterns in 123I-Ioflupane imaging for the automatic detection of Parkinsonism. Med. Phys. 41(1) (2014)
Martínez-Murcia, F., Górriz, J., Ramírez, J., Illán, I., Ortiz, A.: Automatic detection of Parkinsonism using significance measures and component analysis in DaTSCAN imaging. Neurocomputing 126, 58–70 (2014). https://doi.org/10.1016/j.neucom.2013.01.054. Recent trends in Intelligent Data Analysis Online Data Processing
Martinez-Murcia, F.J., Górriz, J.M., Ramírez, J., Ortiz, A.: Convolutional neural networks for neuroimaging in Parkinson’s disease: is preprocessing needed? Int. J. Neural Syst. (2018). https://doi.org/10.1142/s0129065718500351
Martinez-Murcia, F.J., et al.: A 3D convolutional neural network approach for the diagnosis of Parkinson’s disease. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2017. LNCS, vol. 10337, pp. 324–333. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59740-9_32
London Institute of Neurology, UCL: Statistical parametrix mapping (2012). http://fil.ion.ucl.ac.uk/spm/
Oliveira, F.P.M., Castelo-Branco, M.: Computer-aided diagnosis of Parkinson’s disease based on [(123)I]FP-CIT SPECT binding potential images, using the voxels-as-features approach and support vector machines. J. Neural Eng. 12(2) (2015). https://doi.org/10.1088/1741-2560/12/2/026008
Ortiz, A., Martínez-Murcia, F.J., García-Tarifa, M.J., Lozano, F., Górriz, J.M., Ramírez, J.: Automated diagnosis of Parkinsonian syndromes by deep sparse filtering-based features. In: Chen, Y.-W., Tanaka, S., Howlett, R.J., Jain, L.C. (eds.) Innovation in Medicine and Healthcare 2016. SIST, vol. 60, pp. 249–258. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39687-3_24
Ortiz, A., Munilla, J., Martinez-Murcia, F.J., Górriz, J.M., Ramírez, J.: Empirical functional PCA for 3D image feature extraction through fractal sampling. Int. J. Neural Syst. 1–22 (2019). https://doi.org/10.1142/S0129065718500405
Palumbo, B., et al.: Diagnostic accuracy of Parkinson disease by support vector machine (SVM) analysis of 123I-FP-CIT brain SPECT data: implications of putaminal findings and age. Medicine 93(27), e228 (2014). https://doi.org/10.1097/MD.0000000000000228
Palumbo, B., et al.: Comparison of two neural network classifiers in the differential diagnosis of essential tremor and Parkinson’s disease by (123)I-FP-CIT brain SPECT. Eur. J. Nuclear Med. Mol. Imaging 37(11), 2146–2153 (2010). https://doi.org/10.1007/s00259-010-1481-6
Prashanth, R., Dutta Roy, S., Mandal, P.K., Ghosh, S.: Automatic classification and prediction models for early Parkinson’s disease diagnosis from SPECT imaging. Expert Syst. Appl. 41(7), 3333–3342 (2014). https://doi.org/10.1016/j.eswa.2013.11.031
Rojas, A., et al.: Application of empirical mode decomposition (EMD) on DaTSCAN SPECT images to explore Parkinson disease. Expert Syst. Appl. 40(7), 2756–2766 (2013)
Salas-Gonzalez, D., et al.: Building a FP-CIT SPECT brain template using a posterization approach. Neuroinformatics 13(4), 391–402 (2015)
Segovia, F., Górriz, J.M., Ramírez, J., Chaves, R., Illán, I.Á.: Automatic differentiation between controls and Parkinson’s disease DaTSCAN images using a partial least squares scheme and the fisher discriminant ratio. In: KES, pp. 2241–2250 (2012)
Taylor, J.C., Fenner, J.W.: Comparison of machine learning and semi-quantification algorithms for (I123)FP-CIT classification: the beginning of the end for semi-quantification? EJNMMI Phys. 4, 29 (2017). https://doi.org/10.1212/01.CON.0000436152.24038.e0
Towey, D.J., Bain, P.G., Nijran, K.S.: Automatic classification of 123I-FP-CIT (DaTSCAN) SPECT images. Nuclear Med. Commun. 32(8), 699–707 (2011)
Zhang, Y.C., Kagen, A.C.: Machine learning interface for medical image analysis. J. Digit. Imaging 30(5), 615–621 (2017). https://doi.org/10.1007/s10278-016-9910-0
Acknowledgments
This work was partly supported by the MINECO/FEDER under TEC2015-64718-R and PSI2015-65848-R projects. We gratefully acknowledge the support of NVIDIA Corporation with the donation of one of the GPUs used for this research. PPMI - a public - private partnership - is funded by The Michael J. Fox Foundation for Parkinson’s Research and funding partners, including Abbott, Biogen Idec, F. Hoffman-La Roche Ltd., GE Healthcare, Genentech and Pfizer Inc.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Martínez-Ibañez, M., Ortiz, A., Munilla, J., Salas-Gonzalez, D., Górriz, J.M., Ramírez, J. (2019). Isosurface Modelling of DatSCAN Images for Parkinson Disease Diagnosis. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) Understanding the Brain Function and Emotions. IWINAC 2019. Lecture Notes in Computer Science(), vol 11486. Springer, Cham. https://doi.org/10.1007/978-3-030-19591-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-19591-5_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19590-8
Online ISBN: 978-3-030-19591-5
eBook Packages: Computer ScienceComputer Science (R0)