Skip to main content

Crowding Differential Evolution for Protein Structure Prediction

  • Conference paper
  • First Online:
From Bioinspired Systems and Biomedical Applications to Machine Learning (IWINAC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11487))

Abstract

A hybrid combination between differential evolution and a local refinement of protein structures provided by fragment replacements was performed for protein structure prediction. The coarse-grained protein conformation representation of the Rosetta environment was used. Given the deceptiveness of the Rosetta energy model, an evolutionary computing niching method, crowding, was incorporated in the evolutionary algorithm with the aim to obtain optimized solutions that at the same time provide a set of diverse protein folds. Thus, the probability to obtain optimized conformations close to the native structure is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anfinsen, C.B.: Principles that govern the folding of proteins. Science 181(96), 223–230 (1973)

    Article  Google Scholar 

  2. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. Doctoral dissertation, University of Michigan, Ann Arbor, MI (1975)

    Google Scholar 

  3. Dill, K.A.: Dominant forces in protein folding. Biochemestry 29, 7133–7155 (1990)

    Article  Google Scholar 

  4. Feoktistov, V.: Differential Evolution: In Search of Solutions. Springer, New York (2006). https://doi.org/10.1007/978-0-387-36896-2

    Book  MATH  Google Scholar 

  5. Garza-Fabre, M., Kandathil, S.M., Handl, J., Knowles, J., Lovell, S.C.: Generating, maintaining, and exploiting diversity in a memetic algorithm for protein structure prediction. Evol. Comput. 24(4), 577–607 (2016)

    Article  Google Scholar 

  6. Kmiecik, S., Gront, D., Kolinski, M., Wieteska, L., Dawid, A.E., Kolinski, A.: Coarse-grained protein models and their applications. Chem. Rev. 116, 7898–7936 (2016)

    Article  Google Scholar 

  7. Protein Data Bank. http://www.wwpdb.org

  8. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution. A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  9. Rohl, C.A., Strauss, C.E.M., Misura, K.M., Baker, D.: Protein structure prediction using Rosetta. Methods Enzym. 383, 66–93 (2004)

    Article  Google Scholar 

  10. Rosetta system. http://www.rosettacommons.org

  11. Saleh, S., Olson, B., Shehu, A.: A population-based evolutionary search approach to the multiple minima problem in de novo protein structure prediction. BMC Struct. Biol. 13(1), S4 (2013)

    Article  Google Scholar 

  12. Santos, J., Diéguez, M.: Differential evolution for protein structure prediction using the HP model. In: Ferrández, J.M., Álvarez Sánchez, J.R., de la Paz, F., Toledo, F.J. (eds.) IWINAC 2011. LNCS, vol. 6686, pp. 323–333. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21344-1_34

    Chapter  Google Scholar 

  13. Sippl, M.J.: Knowledge-based potentials for proteins. Curr. Opin. Struct. Biol. 5(2), 229–235 (1995)

    Article  Google Scholar 

  14. Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 1382–1389 (2004)

    Google Scholar 

  15. Unger, R.: The genetic algorithm approach to protein structure prediction. Struct. Bond. 110, 153–175 (2004)

    Article  Google Scholar 

  16. Varela, D., Santos, J.: Combination of differential evolution and fragment-based replacements for protein structure prediction. In: GECCO 2015 Proceedings Companion, pp. 911–914 (2015)

    Google Scholar 

  17. Varela, D., Santos, J.: A hybrid evolutionary algorithm for protein structure prediction using the face-centered cubic lattice model. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S. (eds.) ICONIP 2017. LNCS, vol. 10634, pp. 628–638. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70087-8_65

    Chapter  Google Scholar 

  18. Zhao, X.: Advances on protein folding simulations based on the lattice HP models with natural computing. Appl. Soft Comput. 8, 1029–1040 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by Xunta de Galicia (“Centro singular de investigación de Galicia” accreditation 2016-2019 ED431G/01) and the European Regional Development Fund (ERDF). D. Varela grant has received financial support from the Xunta de Galicia and the European Union (European Social Fund - ESF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varela, D., Santos, J. (2019). Crowding Differential Evolution for Protein Structure Prediction. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds) From Bioinspired Systems and Biomedical Applications to Machine Learning. IWINAC 2019. Lecture Notes in Computer Science(), vol 11487. Springer, Cham. https://doi.org/10.1007/978-3-030-19651-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19651-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19650-9

  • Online ISBN: 978-3-030-19651-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics