Skip to main content

A Peer-to-Peer Based Cloud Storage Supporting Orthogonal Range Queries of Arbitrary Dimension

  • Conference paper
  • First Online:
Algorithmic Aspects of Cloud Computing (ALGOCLOUD 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11409))

Included in the following conference series:

  • 495 Accesses

Abstract

We present a peer-to-peer network that supports the efficient processing of orthogonal range queries in a d-dimensional point space. The network is the same for each dimension, namely a distance halving network like the one introduced by Naor and Wieder (ACM TALG’07). We show how to execute such range queries using \(\mathcal {O}\left( 2^{d'}d\,\log m + d\,|R|\right) \) hops (and the same number of messages) in total. Here \([m]^d\) is the ground set, |R| is the size and \(d'\) the dimension of the queried range. Furthermore, if the peers form a distributed network, the query can be answered in \(\mathcal {O}\left( d\,\log m + d\,\sum _{i=1}^{d}(b_i-a_i+1)\right) \) communication rounds. Our algorithms are based on a mapping of the Hilbert Curve through \([m]^d\) to the peers.

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center ‘On-The-Fly Computing’ (SFB 901).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alber, J., Niedermeier, R.: On multidimensional curves with hilbert property. Theory Comput. Syst. 33(4), 295–312 (2000). https://doi.org/10.1007/s002240010003

    Article  MathSciNet  MATH  Google Scholar 

  2. Albrecht, J., Oppenheimer, D., Vahdat, A., Patterson, D.A.: Design and implementation trade-offs for wide-area resource discovery. ACM Trans. Internet Technol. 8(4), 18:1–18:44 (2008). https://doi.org/10.1145/1391949.1391952

    Article  Google Scholar 

  3. Andrzejak, A., Xu, Z.: Scalable, efficient range queries for grid information services. In: P2P 2002 Proceedings of the Second International Conference on Peer-to-Peer Computing, pp. 33–40 (2002). https://doi.org/10.1109/PTP.2002.1046310

  4. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: a multi-attribute addressable network for grid information services. J. Grid Comput. 2(1), 3–14 (2003). https://doi.org/10.1007/s10723-004-1184-y

    Article  MATH  Google Scholar 

  5. Carlini, E., Lulli, A., Ricci, L.: DRAGON: multidimensional range queries on distributed aggregation trees. Future Gener. Comput. Syst. 55, 101–115 (2016). https://doi.org/10.1016/j.future.2015.07.020, http://www.sciencedirect.com/science/article/pii/S0167739X15002526

  6. Datta, A., Hauswirth, M., John, R., Schmidt, R., Aberer, K.: Range queries in trie-structured overlays. In: P2P 2005 Proceedings of the Fifth IEEE International Conference on Peer-to-Peer Computing, pp. 57–66. IEEE (2005)

    Google Scholar 

  7. Ganesan, P., Yang, B., Garcia-Molina, H.: One torus to rule them all: multi-dimensional queries in P2P systems. In: WebDB 2004 Proceedings of the 7th International Workshop on the Web and Databases: Colocated with ACM SIGMOD/PODS 2004 WebDB 2004, pp. 19–24. ACM, New York (2004). https://doi.org/10.1145/1017074.1017081

  8. Hilbert, D.: Über die stetige Abbildung einer Linie auf ein Flächenstück, pp. 1–2. Springer, Heidelberg (1935). https://doi.org/10.1007/978-3-662-38452-7-1

  9. Jagadish, H.V., Ooi, B.C., Vu, Q.H.: Baton: a balanced tree structure for peer-to-peer networks. In: Proceedings of the 31st International Conference on Very Large Data Bases VLDB Endowment, pp. 661–672 (2005)

    Google Scholar 

  10. Lee, K., Choi, T., Boykin, P.O., Figueiredo, R.J.: MatchTree: flexible, scalable, and fault-tolerant wide-area resource discovery with distributed matchmaking and aggregation. Future Gener. Comput. Syst. 29(6), 1596–1610 (2013). https://doi.org/10.1016/j.future.2012.08.009, http://www.sciencedirect.com/science/article/pii/S0167739X12001653. including Special sections: High Performance Computing in the Cloud & Resource Discovery Mechanisms for P2P Systems

  11. Li, D., Cao, J., Lu, X., Chen, K.C.C.: Efficient range query processing in peer-to-peer systems. IEEE Trans. Knowl. Data Eng. 21(1), 78–91 (2009). https://doi.org/10.1109/TKDE.2008.99

    Article  Google Scholar 

  12. Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)

    Article  Google Scholar 

  13. Naor, M., Wieder, U.: Novel architectures for P2P applications: the continuous-discrete approach. ACM Trans. Algorithms 3(3), 34 (2007). https://doi.org/10.1145/1273340.1273350

    Article  MathSciNet  MATH  Google Scholar 

  14. Pitoura, T., Ntarmos, N., Triantafillou, P.: Saturn: range queries, load balancing and fault tolerance in DHT data systems. IEEE Trans. Knowl. Data Eng. 24(7), 1313–1327 (2012). https://doi.org/10.1109/TKDE.2010.266

    Article  Google Scholar 

  15. Ramabhadran, S., Ratnasamy, S., Hellerstein, J.M., Shenker, S.: Prefix hash tree: an indexing data structure over distributed hash tables. In: Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing, January 2004

    Google Scholar 

  16. Schmidt, C., Parashar, M.: Squid: enabling search in DHT-based systems. J. Parallel Distrib. Comput. 68, 962–975 (2008)

    Article  Google Scholar 

  17. Shen, H., Xu, C.Z.: Leveraging a compound graph-based DHT for multi-attribute range queries with performance analysis. IEEE Trans. Comput. 61(4), 433–447 (2012). https://doi.org/10.1109/TC.2011.30

    Article  MathSciNet  MATH  Google Scholar 

  18. Shu, Y., Ooi, B.C., Tan, K.L., Zhou, A.: Supporting multi-dimensional range queries in peer-to-peer systems. In: P2P 2005 Proceedings of the Fifth IEEE International Conference on Peer-to-Peer Computing, pp. 173–180, August 2005. https://doi.org/10.1109/P2P.2005.35

  19. Stoica, I., et al.: Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Trans. Network. 11(1), 17–32 (2003)

    Article  Google Scholar 

  20. Zhang, C., Krishnamurthy, A., Wang, R.Y.: Skipindex: Towards a scalable peer-to-peer index service for high dimensional data. Technical report, Princeton University, May 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Markus Benter , Till Knollmann , Friedhelm Meyer auf der Heide , Alexander Setzer or Jannik Sundermeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benter, M., Knollmann, T., auf der Heide, F.M., Setzer, A., Sundermeier, J. (2019). A Peer-to-Peer Based Cloud Storage Supporting Orthogonal Range Queries of Arbitrary Dimension. In: Disser, Y., Verykios, V. (eds) Algorithmic Aspects of Cloud Computing. ALGOCLOUD 2018. Lecture Notes in Computer Science(), vol 11409. Springer, Cham. https://doi.org/10.1007/978-3-030-19759-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19759-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19758-2

  • Online ISBN: 978-3-030-19759-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics