Skip to main content

A Novel Heuristic Approach for the Simultaneous Selection of the Optimal Clustering Method and Its Internal Parameters for Time Series Data

  • Conference paper
  • First Online:
14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019) (SOCO 2019)

Abstract

Clustering methods have become popular in the last years due to the need of analyzing the high amount of collected data from different fields of knowledge. Nevertheless, the main drawback of clustering is the selection of the optimal method along with its internal parameters in an unsupervised environment. In the present paper, a novel heuristic approach based on the Harmony Search algorithm aided with a local search procedure is presented for simultaneously optimizing the best clustering algorithm (K-means, DBSCAN and Hierarchical clustering) and its optimal internal parameters based on the Silhouette index. Extensive simulation results show that the presented approach outperforms the standard clustering configurations and also other works in the literature in different Time Series and synthetic databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lampert, T., Lafabregue, B., Serrette, N., Forestier, G., Crémilleux, B., Vrain, C., Gançarski, P., et al.: Constrained distance based clustering for time-series: a comparative and experimental study. Data Min. Knowl. Disc. 32(6), 1663–1707 (2018)

    Article  MathSciNet  Google Scholar 

  2. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade review. Inf. Syst. 53, 16–38 (2015)

    Article  Google Scholar 

  3. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  4. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  5. Karypis, G., Han, E.H., Kumar, V.: Chameleon: hierarchical clustering using dynamic modeling. Computer 32(8), 68–75 (1999)

    Article  Google Scholar 

  6. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)

    Google Scholar 

  7. Wang, W., Yang, J., Muntz, R., et al.: STING: a statistical information grid approach to spatial data mining. In: VLDB, vol. 97, pp. 186–195 (1997)

    Google Scholar 

  8. Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: a multi-resolution clustering approach for very large spatial databases. In: VLDB, vol. 98, pp. 428–439 (1998)

    Google Scholar 

  9. Thang, T.M., Kim, J.: The anomaly detection by using DBSCAN clustering with multiple parameters. In: 2011 International Conference on Information Science and Applications (ICISA), pp. 1–5. IEEE (2011)

    Google Scholar 

  10. Zhou, H., Wang, P., Li, H.: Research on adaptive parameters determination in DBSCAN algorithm. J. Inf. Comput. Sci. 9(7), 1967–1973 (2012)

    Google Scholar 

  11. Davis, L.: Handbook of Genetic Algorithms (1991)

    Google Scholar 

  12. Shi, Y., et al.: Particle swarm optimization: developments, applications and resources. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 81–86. IEEE (2001)

    Google Scholar 

  13. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  14. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  15. Sun, J., Chen, W., Fang, W., Wun, X., Xu, W.: Gene expression data analysis with the clustering method based on an improved quantum-behaved particle swarm optimization. Eng. Appl. Artif. Intell. 25(2), 376–391 (2012)

    Article  Google Scholar 

  16. Kao, Y., Lee, S.Y.: Combining k-means and particle swarm optimization for dynamic data clustering problems. In: 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, ICIS 2009, vol. 1, pp. 757–761. IEEE (2009)

    Google Scholar 

  17. Cui, X., Potok, T.E., Palathingal, P.: Document clustering using particle swarm optimization. In: Proceedings 2005 IEEE on Swarm Intelligence Symposium, SIS 2005, pp. 185–191. IEEE (2005)

    Google Scholar 

  18. Xiao, L., Shao, Z., Liu, G.: K-means algorithm based on particle swarm optimization algorithm for anomaly intrusion detection. In: 2006 The Sixth World Congress on Intelligent Control and Automation, WCICA 2006, vol. 2, pp. 5854–5858. IEEE (2006)

    Google Scholar 

  19. Ahmadyfard, A., Modares, H.: Combining PSO and k-means to enhance data clustering. In: 2008 International Symposium on Telecommunications, IST 2008, pp. 688–691. IEEE (2008)

    Google Scholar 

  20. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  21. Steinley, D.: Properties of the Hubert-Arable adjusted Rand index. Psychol. Methods 9(3), 386 (2004)

    Article  Google Scholar 

  22. Alswaitti, M., Albughdadi, M., Isa, N.A.M.: Density-based particle swarm optimization algorithm for data clustering. Expert Syst. Appl. 91, 170–186 (2018)

    Article  Google Scholar 

  23. Guan, C., Yuen, K.K.F., Coenen, F.: Particle swarm optimized density-based clustering and classification: supervised and unsupervised learning approaches. Swarm Evol. Comput. 44, 876–896 (2018)

    Article  Google Scholar 

  24. Karami, A., Johansson, R.: Choosing DBSCAN parameters automatically using differential evolution. Int. J. Comput. Appl. 91(7), 1–11 (2014)

    Google Scholar 

  25. Cai, Z., Gong, W., Ling, C.X., Zhang, H.: A clustering-based differential evolution for global optimization. Appl. Soft Comput. 11(1), 1363–1379 (2011)

    Article  Google Scholar 

  26. Mahdavi, M., Abolhassani, H.: Harmony k-means algorithm for document clustering. Data Min. Knowl. Disc. 18(3), 370–391 (2009)

    Article  MathSciNet  Google Scholar 

  27. Dau, H.A., Keogh, E., Kamgar, K., Yeh, C.C.M., Zhu, Y., Gharghabi, S., Ratanamahatana, C.A., Chen, Y., Hu, B., Begum, N., Bagnall, A., Mueen, A., Batista, G.: The UCR time series classification archive, October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

  28. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  29. Menéndez, H.D., Otero, F.E., Camacho, D.: Medoid-based clustering using ant colony optimization. Swarm Intell. 10(2), 123–145 (2016)

    Article  Google Scholar 

  30. Liao, T.W.: Clustering of time series data–a survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    Article  Google Scholar 

  31. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378 (2011)

  32. Birant, D., Kut, A.: ST-DBSCAN: an algorithm for clustering spatial-temporal data. Data Knowl. Eng. 60(1), 208–221 (2007)

    Article  Google Scholar 

  33. Almeida, H., Guedes, D., Meira, W., Zaki, M.J.: Is there a best quality metric for graph clusters? In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 44–59. Springer (2011)

    Google Scholar 

  34. Kumar, V., Chhabra, J.K., Kumar, D.: Effect of harmony search parameters’ variation in clustering. Procedia Technol. 6, 265–274 (2012)

    Article  Google Scholar 

  35. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in k-means clustering. Int. J. 1(6), 90–95 (2013)

    Google Scholar 

Download references

Acknowledgments

This research has been supported by a TECNALIA Research and Innovation PhD Scholarship, ELKARTEK program (SENDANEU KK-2018/00032) and the HAZITEK program (DATALYSE ZL-2018/00765) of the Basque Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Navajas-Guerrero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Navajas-Guerrero, A., Manjarres, D., Portillo, E., Landa-Torres, I. (2020). A Novel Heuristic Approach for the Simultaneous Selection of the Optimal Clustering Method and Its Internal Parameters for Time Series Data. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J., Quintián, H., Corchado, E. (eds) 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019). SOCO 2019. Advances in Intelligent Systems and Computing, vol 950. Springer, Cham. https://doi.org/10.1007/978-3-030-20055-8_17

Download citation

Publish with us

Policies and ethics