Skip to main content

Abstract

In recent years the terms big data, soft computing and machine learning have been widely extended in several research fields, where the analysis of data (mainly time series) provides useful information to solve different types of engineering problems. Turbulent flows and reduced order models (ROMs) are two terms related to the field of fluid dynamics that can be compared to the previous expressions, which are generally used in data science. This paper presents a short introduction to some of the methodologies generally used in fluid dynamics for the analysis of complex flows to extract spatio-temporal features. These methods are also used to construct ROMs to predict spatio-temporal events using a small number of variables. The paper intends to connect the field of computer and data science with the classical terms and methodologies used in fluid dynamics for soft computing and machine learning, known as ROMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y., Ma, J.: Random noise attenuation by f-x empirical-mode decomposition predictive filtering. Geophysics 79(3), 81–91 (2014)

    Article  Google Scholar 

  2. Chen, K.K., Tu, J.H., Rowley, C.W.: Variants of dynamic mode decomposition: boundary condition, Koopman and Fourier analyses. J. Nonlinear Sci. 22, 8871–8875 (2012)

    Article  MathSciNet  Google Scholar 

  3. Dowell, H., Hall, K.H.: Modeling of fluid-structure interaction. Ann. Rev. Fluid Mech. 33(1), 445 (2001)

    Article  Google Scholar 

  4. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1(3), 211–218 (1936)

    Article  Google Scholar 

  5. Ferrari, M., Werner, G.S., Bahrmann, P., Richartz, B.M., Figulla, H.R.: Turbulent flow as a cause for underestimating coronary flow reserve measured by Doppler guide wire. Cardiovasc. Ultrasound 14(4) (2006)

    Google Scholar 

  6. Koopman, B.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. U.S.A 17, 315–318 (1931)

    Article  Google Scholar 

  7. Kou, J., Le Clainche, S., Zhang, W.: A reduced-order model for compressible flows with buffeting condition using higher order dynamic mode decomposition. Phys. Fluids 30(1), 016103 (2018)

    Article  Google Scholar 

  8. Kutz, J.N., Fu, X., Brunton, S.L.: Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Sys. 15(2), 713–735 (2016)

    Article  MathSciNet  Google Scholar 

  9. Le Clainche, S.: Prediction of the optimal vortex in synthetic jets. Energies (under review) (2019)

    Google Scholar 

  10. Le Clainche, S., Ferrer, E.: A reduced order model to predict transient flows around straight bladed vertical axis wind turbines. Energies 11(3), 566–578 (2018)

    Article  Google Scholar 

  11. Le Clainche, S., Lorente, L., Vega, J.M.: Wind predictions upstream wind turbines from a LiDAR database. Energies 11(3), 543–558 (2018)

    Article  Google Scholar 

  12. Le Clainche, S., Varas, F., Vega, J.M.: Accelerating oil reservoir simulations using POD on the fly. Int. J. Numer. Methods Eng. 110(1), 79–100 (2017)

    Article  MathSciNet  Google Scholar 

  13. Le Clainche, S., Vega, J.M.: Higher order dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 16(2), 882–925 (2017)

    Article  MathSciNet  Google Scholar 

  14. Le Clainche, S., Vega, J.M.: Higher order dynamic mode decomposition to identify and extrapolate flow patterns. Phys. Fluids 29, 084102 (2017)

    Article  Google Scholar 

  15. Le Clainche, S., Vega, J.M., Soria, J.: Higher order dynamic mode decomposition for noisy experimental data: flow structures on a zero-net-mass-flux jet. Exp. Therm. Fluid Sci. 88, 336–353 (2017)

    Article  Google Scholar 

  16. Lumley, J.L.: The structure of inhomogeneous turbulent flows. In: Yaglam, A.M., Tatarsky, V.I. (eds.) Proceedings of the International Colloquium on the Fine Scale Structure of the Atmosphere and Its Influence on Radio Wave Propagation. Doklady Akademii Nauk SSSR, Nauka, Moscow (1967)

    Google Scholar 

  17. Marusic, I., Candler, G., Interrante, V., Subbareddy, P.K., Moss, A.: Real time feature extraction for the analysis of turbulent flows. Semantic Scholar, Chap. 13 (2003). https://doi.org/10.1007/978-1-4615-1733-7-13

  18. Mendez, M.A., Balabane, M., Buchlin, J.M.: Multi-scale proper orthogonal decomposition of complex fluid flows. J. Fluid Mech. (submitted). arXiv:1804.09646v3 [physics.flu-dyn]

  19. Noack, B.R., Morzynski, M., Tadmor, G.: Reduced-Order Modelling for Flow Control. Springer, New York (2011)

    Book  Google Scholar 

  20. Parente, A.: Experimental and numerical investigation of advanced systems for hydrogen-based fuel compustion. Ph.D. Thesis, University of Pisa (2008)

    Google Scholar 

  21. Park, K.H., Jun, S.O., Baek, S.M., Cho, M.H., Yee, K.J., Lee, D.H.: Reduced-order model with an artificial neural network for aerostructural design optimization. J. Aircr. 50(4), 1106 (2013)

    Article  Google Scholar 

  22. Rapun, M.L., Vega, J.M.: Reduced order models based on local POD plus Galerkin projection. J. Comput. Phys. 229(8), 3046–3063 (2010)

    Article  MathSciNet  Google Scholar 

  23. Rowley, C.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcat. Chaos 15(03), 997 (2005)

    Article  MathSciNet  Google Scholar 

  24. Rowley, C., Dawson, S.T.M.: Model reduction for flow analysis and control. Ann. Rev. Fluid Mech. 49, 387–417 (2017)

    Article  MathSciNet  Google Scholar 

  25. Sirovich, L.: Turbulence and the dynamics of coherent structures. Parts I–III. Q. Appl. Math. 45(3), 561–571 (1987)

    Article  Google Scholar 

  26. Schmid, P.: Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 5–28 (2010)

    Article  MathSciNet  Google Scholar 

  27. Schmidt, O., Towne, A., Colonius, T., Cavalieri, A., Jordan, P., Bres, G.: Wavepackets and trapped acoustic modes in a Mach 0.9 turbulent jet: a global stability analysis. J. Fluid Mech. 825, 1153–1181 (2017)

    Article  MathSciNet  Google Scholar 

  28. Takens, F.: Detecting strange attractors in turbulence. In: Rand, D.A., Young, L.-S. (eds.) Lecture Notes in Mathematics, pp. 366–381. Springer (1981)

    Google Scholar 

  29. Theofilis, V.: Advances in global linear instability analysis of nonparallel and three-dimensional flows. Prog. Aerosp. Sci. 39(4), 249–315 (2003)

    Article  Google Scholar 

  30. Tucker, L.R.: Some mathematical notes on three-mode factor analysis. Psychometrika 31(3), 279–311 (1966)

    Article  MathSciNet  Google Scholar 

  31. Vinuesa, R., Schlatter, P., Malm, J., Mavriplis, C., Henningson, D.S.: Turbulent boundary layers around wing sections up to Rec = 1,000,000. Int. J. Heat Fluid Flow 72, 86–99 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. J. M. Vega for many interesting discussions and his continuous support. This work was supported by ‘Programa Propio UPM’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soledad Le Clainche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le Clainche, S. (2020). An Introduction to Some Methods for Soft Computing in Fluid Dynamics. In: Martínez Álvarez, F., Troncoso Lora, A., Sáez Muñoz, J., Quintián, H., Corchado, E. (eds) 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019). SOCO 2019. Advances in Intelligent Systems and Computing, vol 950. Springer, Cham. https://doi.org/10.1007/978-3-030-20055-8_53

Download citation

Publish with us

Policies and ethics