Abstract
Graph edit distance has become an important tool in structural pattern recognition since it allows us to measure the dissimilarity of attributed graphs. One of its main constraints is that it requires an adequate definition of edit costs, which are application dependent. These costs eventually determine which graphs are considered similar or not in a concrete application. Several methods have been presented to learn these costs to avoid manually setting them. They are based on different techniques ranging from probabilistic methods to neural networks or known optimisation algorithms. The aim of this paper is twofold. On the one hand, we list them and summarize their features. On the other hand, we empirically analyse the behaviour of the proposed optimisation functions. We conclude that these functions return different edit costs and therefore, they have to be considered application dependent and not only a technicality of the method, as it has been considered so far.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognit. Lett. 1(4), 245–253 (1983)
Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)
Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)
Serratosa, F., Cortés, X.: Graph Edit Distance: moving from global to local structure to solve the graph-matching problem. Pattern Recognit. Lett. 65, 204–210 (2015)
Serratosa, F.: Graph edit distance: Restrictions to be a metric. Pattern Recognit. 90, 250–256 (2019)
Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph matching. Trans. Syst. Man Cybern. 35(3), 305–314 (2005)
Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit distance. Inf. Sci. 177(1), 239–247 (2007)
Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)
Leordeanu, M., Sukthankar, R., Hebert, M.: Unsupervised learning for graph matching. Int. J. Comput. Vis. 96(1), 28–45 (2012)
Cortés, X., Serratosa, F.: Learning graph-matching edit-costs based on the optimality of the Oracle’s node correspondences. Pattern Recognit. Lett. 56, 22–29 (2015)
Cortés, X., Serratosa, F.: Learning graph matching substitution weights based on the ground truth node correspondence. Int. J. Pattern Recognit. Artif. Intell. 30(2), 1650005, 22 p. (2016)
Raveaux, R., Martineau, M., Conte, D., Venturini, G.: Learning graph matching with a graph-based perceptron in a classification context. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 49–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58961-9_5
Cortés, X., Conte, D., Cardot, H., Serratosa, F.: A deep neural network architecture to estimate node assignment costs for the graph edit distance. In: Bai, X., Hancock, E.R., Ho, T.K., Wilson, R.C., Biggio, B., Robles-Kelly, A. (eds.) S+SSPR 2018. LNCS, vol. 11004, pp. 326–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97785-0_31
Santacruz, P., Serratosa, F.: Learning the sub-optimal graph edit distance edit costs based on an embedded model. In: Bai, X., Hancock, E.R., Ho, T.K., Wilson, R.C., Biggio, B., Robles-Kelly, A. (eds.) S+SSPR 2018. LNCS, vol. 11004, pp. 282–292. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97785-0_27
Algabli, S., Serratosa, F.: Embedding the node-to-node mappings to learn the Graph edit distance parameters. Pattern Recognit. Lett. 112, 353–360 (2018)
Martineau, M., Raveaux, R., Conte, D., Venturini, G.: Learning error-correcting graph matching with a multiclass neural network. Pattern Recognit. Lett. (2018, in press). https://doi.org/10.1016/j.patrec.2018.03.031
Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_44
Cho, M., Alahari, K., Ponce, J.: Learning graphs to match. In: ICCV 2013, pp: 25–32 (2013)
Serratosa, F., Cortés, X.: Interactive graph-matching using active query strategies. Pattern Recognit. 48(4), 1364–1373 (2015)
Cortés, X., Serratosa, F.: An interactive method for the image alignment problem based on partially supervised correspondence. Expert Syst. Appl. 42(1), 179–192 (2015)
Davies, D., Bouldin, D.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979)
Dunn, J.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974)
Hubert, L., Schultz, J.: Quadratic assignment as a general data analysis strategy. Br. J. Math. Stat. Psychol. 29, 190–241 (1976)
Goodman, L., Kruskal, W.: Measures of Association for Cross Classification. Springer, New York (1979). https://doi.org/10.1007/978-1-4612-9995-0_1
Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)
Rand, W.: Objective criteria for the evaluation of clustering methods. J. A. Stat. Assoc. 66(336), 846–850 (1971)
Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)
Fowlkes, E., Mallows, C.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553–584 (1983)
Moreno-García, C.F., Cortés, X., Serratosa, F.: A graph repository for learning error-tolerant graph matching. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) Structural, Syntactic, and Statistical Pattern Recognition, vol. 10029, pp. 519–529. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_46
Acknowledgments
This research is supported by projects TIN2016-77836-C2-1-R, DPI2016-78957-R AEI/FEDER EU; and the European projects AEROARMS, H2020-ICT-2014-1-644271 and NanoInformaTIX, H2020-NMBP-TO-IND-2018-2020-814426.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Rica, E., Álvarez, S., Serratosa, F. (2019). Learning the Graph Edit Costs: What Do We Want to Optimise?. In: Conte, D., Ramel, JY., Foggia, P. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2019. Lecture Notes in Computer Science(), vol 11510. Springer, Cham. https://doi.org/10.1007/978-3-030-20081-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-20081-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20080-0
Online ISBN: 978-3-030-20081-7
eBook Packages: Computer ScienceComputer Science (R0)