Skip to main content

Learning the Graph Edit Costs: What Do We Want to Optimise?

  • Conference paper
  • First Online:
Graph-Based Representations in Pattern Recognition (GbRPR 2019)

Abstract

Graph edit distance has become an important tool in structural pattern recognition since it allows us to measure the dissimilarity of attributed graphs. One of its main constraints is that it requires an adequate definition of edit costs, which are application dependent. These costs eventually determine which graphs are considered similar or not in a concrete application. Several methods have been presented to learn these costs to avoid manually setting them. They are based on different techniques ranging from probabilistic methods to neural networks or known optimisation algorithms. The aim of this paper is twofold. On the one hand, we list them and summarize their features. On the other hand, we empirically analyse the behaviour of the proposed optimisation functions. We conclude that these functions return different edit costs and therefore, they have to be considered application dependent and not only a technicality of the method, as it has been considered so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognit. Lett. 1(4), 245–253 (1983)

    Article  Google Scholar 

  2. Sanfeliu, A., Fu, K.S.: A distance measure between attributed relational graphs for pattern recognition. IEEE Trans. Syst. Man Cybern. 13(3), 353–362 (1983)

    Article  Google Scholar 

  3. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal. Appl. 13(1), 113–129 (2010)

    Article  MathSciNet  Google Scholar 

  4. Serratosa, F., Cortés, X.: Graph Edit Distance: moving from global to local structure to solve the graph-matching problem. Pattern Recognit. Lett. 65, 204–210 (2015)

    Article  Google Scholar 

  5. Serratosa, F.: Graph edit distance: Restrictions to be a metric. Pattern Recognit. 90, 250–256 (2019)

    Article  Google Scholar 

  6. Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph matching. Trans. Syst. Man Cybern. 35(3), 305–314 (2005)

    Google Scholar 

  7. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit distance. Inf. Sci. 177(1), 239–247 (2007)

    Article  MathSciNet  Google Scholar 

  8. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. Trans. Pattern Anal. Mach. Intell. 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  9. Leordeanu, M., Sukthankar, R., Hebert, M.: Unsupervised learning for graph matching. Int. J. Comput. Vis. 96(1), 28–45 (2012)

    Article  MathSciNet  Google Scholar 

  10. Cortés, X., Serratosa, F.: Learning graph-matching edit-costs based on the optimality of the Oracle’s node correspondences. Pattern Recognit. Lett. 56, 22–29 (2015)

    Article  Google Scholar 

  11. Cortés, X., Serratosa, F.: Learning graph matching substitution weights based on the ground truth node correspondence. Int. J. Pattern Recognit. Artif. Intell. 30(2), 1650005, 22 p. (2016)

    Google Scholar 

  12. Raveaux, R., Martineau, M., Conte, D., Venturini, G.: Learning graph matching with a graph-based perceptron in a classification context. In: Foggia, P., Liu, C.-L., Vento, M. (eds.) GbRPR 2017. LNCS, vol. 10310, pp. 49–58. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58961-9_5

    Chapter  Google Scholar 

  13. Cortés, X., Conte, D., Cardot, H., Serratosa, F.: A deep neural network architecture to estimate node assignment costs for the graph edit distance. In: Bai, X., Hancock, E.R., Ho, T.K., Wilson, R.C., Biggio, B., Robles-Kelly, A. (eds.) S+SSPR 2018. LNCS, vol. 11004, pp. 326–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97785-0_31

    Chapter  Google Scholar 

  14. Santacruz, P., Serratosa, F.: Learning the sub-optimal graph edit distance edit costs based on an embedded model. In: Bai, X., Hancock, E.R., Ho, T.K., Wilson, R.C., Biggio, B., Robles-Kelly, A. (eds.) S+SSPR 2018. LNCS, vol. 11004, pp. 282–292. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97785-0_27

    Chapter  Google Scholar 

  15. Algabli, S., Serratosa, F.: Embedding the node-to-node mappings to learn the Graph edit distance parameters. Pattern Recognit. Lett. 112, 353–360 (2018)

    Article  Google Scholar 

  16. Martineau, M., Raveaux, R., Conte, D., Venturini, G.: Learning error-correcting graph matching with a multiclass neural network. Pattern Recognit. Lett. (2018, in press). https://doi.org/10.1016/j.patrec.2018.03.031

  17. Torresani, L., Kolmogorov, V., Rother, C.: Feature correspondence via graph matching: models and global optimization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 596–609. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_44

    Chapter  Google Scholar 

  18. Cho, M., Alahari, K., Ponce, J.: Learning graphs to match. In: ICCV 2013, pp: 25–32 (2013)

    Google Scholar 

  19. Serratosa, F., Cortés, X.: Interactive graph-matching using active query strategies. Pattern Recognit. 48(4), 1364–1373 (2015)

    Article  Google Scholar 

  20. Cortés, X., Serratosa, F.: An interactive method for the image alignment problem based on partially supervised correspondence. Expert Syst. Appl. 42(1), 179–192 (2015)

    Article  Google Scholar 

  21. Davies, D., Bouldin, D.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-1(2), 224–227 (1979)

    Article  Google Scholar 

  22. Dunn, J.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4, 95–104 (1974)

    Article  MathSciNet  Google Scholar 

  23. Hubert, L., Schultz, J.: Quadratic assignment as a general data analysis strategy. Br. J. Math. Stat. Psychol. 29, 190–241 (1976)

    Article  MathSciNet  Google Scholar 

  24. Goodman, L., Kruskal, W.: Measures of Association for Cross Classification. Springer, New York (1979). https://doi.org/10.1007/978-1-4612-9995-0_1

    Book  MATH  Google Scholar 

  25. Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat.-Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  26. Rand, W.: Objective criteria for the evaluation of clustering methods. J. A. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  27. Jain, A., Dubes, R.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  28. Fowlkes, E., Mallows, C.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553–584 (1983)

    Article  Google Scholar 

  29. Moreno-García, C.F., Cortés, X., Serratosa, F.: A graph repository for learning error-tolerant graph matching. In: Robles-Kelly, A., Loog, M., Biggio, B., Escolano, F., Wilson, R. (eds.) Structural, Syntactic, and Statistical Pattern Recognition, vol. 10029, pp. 519–529. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49055-7_46

    Chapter  Google Scholar 

Download references

Acknowledgments

This research is supported by projects TIN2016-77836-C2-1-R, DPI2016-78957-R AEI/FEDER EU; and the European projects AEROARMS, H2020-ICT-2014-1-644271 and NanoInformaTIX, H2020-NMBP-TO-IND-2018-2020-814426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Rica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rica, E., Álvarez, S., Serratosa, F. (2019). Learning the Graph Edit Costs: What Do We Want to Optimise?. In: Conte, D., Ramel, JY., Foggia, P. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2019. Lecture Notes in Computer Science(), vol 11510. Springer, Cham. https://doi.org/10.1007/978-3-030-20081-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20081-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20080-0

  • Online ISBN: 978-3-030-20081-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics