Skip to main content

Towards Occupant Protections for Both Men and Women

  • Conference paper
  • First Online:
Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping (AHFE 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 975))

Included in the following conference series:

Abstract

The susceptibility of female occupants to Whiplash Associated Disorders (WADs) has been the focus over the past decades. To improve occupant protections, it is required to understand how gender differences affect the WAD injury mechanisms. The purpose of this study is to investigate the potential impact of the whole spinal alignment on the cervical vertebral kinematics and ligament elongation during a rear impact by analysing rear impact reconstruction simulations. The simulations demonstrated a potential impact of gender differences in whole spinal alignment on cervical vertebral kinematics and ligament elongations. It seems that the average female spinal alignment may expose women to larger deformation of the cervical soft tissues considered related to WAD, due to greater cervical vertebral kinematics, compared to the average male spinal alignment. The findings highlight the importance of the whole spinal alignment when developing female models to evaluate WAD countermeasures, and may thus improve occupant protection for women as well as men.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narragon, E.A.: Sex comparisons in automobile crash injury. CAL report no. VJ-1823-R15 (1965)

    Google Scholar 

  2. Kihlberg, J.K.: Flexion-torsion neck injury in rear impacts. In: Association for the Advancement of Automobile Medicine (1969)

    Google Scholar 

  3. O’Neill, B., Haddon, W., Kelley, A.B., et al.: Automobile head restraints—frequency of neck injury claims in relation to the presence of head restraints. Am. J. Public Health 62(3), 399–406 (1972)

    Article  Google Scholar 

  4. Thomas, C., Faverjon, G., Hartemann, F., et al.: Protection against rear-end accidents. In: IRCOBI Conference, Cologne, Germany (1982)

    Google Scholar 

  5. Otremski, I., Marsh, J.L., Wilde, B.R., et al.: Soft tissue cervical injuries in motor vehicle accidents. Injury 20(6), 349–351 (1989)

    Article  Google Scholar 

  6. Maag, U., Desjardins, D., Bourbeau, R., et al.: Seat belts and neck injuries. In: IRCOBI Conference, Bron, France (1990)

    Google Scholar 

  7. Morris, A.P., Thomas, P.D.: Neck injuries in the UK co-operative crash injury study. SAE technical paper, no. 962433, pp. 317–329 (1996)

    Google Scholar 

  8. Dolinis, J.: Risk factors for “Whiplash” in drivers: a cohort study of rear-end traffic crashes. Injury 28(3), 173–179 (1997)

    Article  Google Scholar 

  9. Temming, J., Zobel, R.: Frequency and risk of cervical spine distortion injuries in passenger car accidents: significance of human factors data. In: IRCOBI Conference, Gothenburg, Sweden (1998)

    Google Scholar 

  10. Chapline, J.F., Ferguson, S.A., Lillis, R.P., et al.: Neck pain and head restraint position relative to the driver’s head in rear-end collisions. Accid. Anal. Prev. 32(2), 287–297 (2000)

    Article  Google Scholar 

  11. Richter, M., Otte, D., Pohlemann, T., et al.: Whiplash-type neck distortion in restrained car drivers: frequency, causes and long-term results. Eur. Spine J. 9(2), 109–117 (2000)

    Article  Google Scholar 

  12. Krafft, M., Kullgren, A., Lie, A., et al.: The risk of whiplash injury in the rear seat compared to the front seat in rear impacts. Traffic Inj. Prev. 4(2), 136–140 (2003)

    Article  Google Scholar 

  13. Jakobsson, L., Norin, H., Svensson, M.Y.: Parameters influencing AIS1 neck injury outcome in frontal impacts. Traffic Inj. Prev. 5(2), 156–163 (2004)

    Article  Google Scholar 

  14. Storvik, S.G., Stemper, B.D., Yoganandan, N., et al.: Population-based estimates of whiplash injury using NASS CDS data - biomed 2009. Biomed. Sci. Instrum. 45, 244–249 (2009)

    Google Scholar 

  15. Carlsson, A., Siegmund, G.P., Linder, A., et al.: Motion of the head and neck of female and male volunteers in rear impact car-to-car tests at 4 and 8 km/h. In: IRCOBI Conference, Hanover, Germany (2010)

    Google Scholar 

  16. Carstensen, T.B., Frostholm, L., Oernboel, E., et al.: Are there gender differences in coping with neck pain following acute whiplash trauma? A 12-month follow-up study. Eur. J. Pain 16(1), 49–60 (2012)

    Article  Google Scholar 

  17. Harder, S., Veilleus, M., Suissa, S.: The effect of socio-demographic and crash-related factors on the prognosis of whiplash. J. Clin. Epidemiol. 51(5), 377–384 (1998)

    Article  Google Scholar 

  18. Cassidy, J.D., Carroll, L.J., Cote, P.: Effect of eliminating compensation for pain and suffering on the outcome of insurance claims for whiplash injury. N. Eng. J. Med. 342(16), 1179–1186 (2000)

    Article  Google Scholar 

  19. Watanabe, Y., Ichikawa, H., Kayama, O., et al.: Influence of seat characteristics on occupant motion in low-velocity rear-end impacts. Accid. Anal. Prev. 32(2), 243–250 (2000)

    Article  Google Scholar 

  20. Stigson, H., Gustafsson, M., Sunnevång, C., et al.: Differences in long-term medical consequences depending on impact direction involving passenger cars. Traffic Inj. Prev. 16, S133–S139 (2015)

    Article  Google Scholar 

  21. Wiklund, K., Larsson, H.: SAAB active head restraint (SAHR) – seat design to reduce the risk of neck injuries in rear impacts. SAE technical paper, no. 980297 (1997)

    Google Scholar 

  22. Jakobsson, L.: Automobile design and whiplash prevention. In: Gunzburg, R., Szpalski, M. (eds.) Whiplash Injuries: Current Concepts in Prevention, Diagnosis and Treatment of the Cervical Whiplash Syndrome, pp. 299–306. Lippincott-Raven, Philadelphia (1998)

    Google Scholar 

  23. Lundell, B., Jakobson, L., Alfredsson, B., et al.: The WHIPS seat – a car seat for improved protection against neck injuries in rear end impacts. In: Enhanced Safety of Vehicles Conference, Windsor, Canada (1998)

    Google Scholar 

  24. Sekizuka, M.: Seat designs for whiplash injury lessening. In: Enhanced Safety of Vehicles Conference, Windsor, Canada (1998)

    Google Scholar 

  25. Kullgren, A., Krafft, M.: Gender analysis on whiplash seat effectiveness: results from real-world crashes. In: IRCOBI Conference, Hanover, Germany (2010)

    Google Scholar 

  26. Kullgren, A., Stigson, H., Krafft, M.: Development of whiplash associated disorders for male and female car occupants in cars launched since the 80s in different impact directions. In: IRCOBI Conference, Gothenburg, Sweden (2013)

    Google Scholar 

  27. UNECE (2018). http://www.unece.org/trans/main/welcwp29.html. Accessed 1 Nov 2018

  28. Euro NCAP (2018). https://www.euroncap.com. Accessed 1 Nov 2018

  29. JNCAP (2018). http://www.nasva.go.jp/mamoru/en/index.html. Accessed 1 Nov 2018

  30. Davidsson, J., Lövsund, P., Ono, K., et al.: A comparison between volunteer, BioRID P3 and Hybrid III performance in rear impacts. In: IRCOBI Conference, Sitges, Spain (1999)

    Google Scholar 

  31. Linder, A., Schick, S., Hell, W., et al.: ADSEAT - adaptive seat to reduce neck injuries for female and male occupants. Accid. Anal. Prev. 60, 334–343 (2013)

    Article  Google Scholar 

  32. Carlsson, A., Chang, F., Lemmen, P., et al.: Anthropometric specifications, development, and evaluation of EvaRID – a 50th percentile female rear impact finite element dummy model. Traffic Inj. Prev. 15(8), 855–865 (2014)

    Article  Google Scholar 

  33. Linder, A., Holmqvist, K., Svensson, M.Y.: Average male and female virtual dummy model (BioRID and EvaRID) simulations with two seat concepts in the Euro NCAP low severity rear impact test configuration. Accid. Anal. Prev. 114, 62–70 (2018)

    Article  Google Scholar 

  34. Sato, F., Holmqvist, K., Linder, A., et al.: Average-sized male and female rear-impact dummy models in simulations of realworld cases addressing sensitivity in whiplash associated disorder assessment. In: IRCOBI Conference IRCOBI, Antwerp, Belgium (2017)

    Google Scholar 

  35. Svensson, M.Y., Lövsund, P., Håland, Y., et al.: Rear-end collisions—a study of the influence of backrest properties on head-neck motion using a new dummy neck. SAE technical paper, no. 930343 (1993)

    Google Scholar 

  36. Kaneoka, K., Ono, K., Inami, S., et al.: Motion analysis of cervical vertebrae during whiplash loading. Spine 24(8), 763–770 (1999)

    Article  Google Scholar 

  37. Luan, F., Yang, K.H., Deng, B., et al.: Qualitative analysis of neck kinematics during low-speed rear-end impact. Clin. Biomech. 15(9), 649–657 (2000)

    Article  Google Scholar 

  38. Deng, B., Luan, F., Begeman, P.C., et al.: Testing shear hypothesis of whiplash injury using experimental and analytical approaches. In: Yoganandan, N., Pinter, F.A. (eds.) Frontiers in Whiplash Trauma, pp. 491–509. IOS Press, Amsterdam (2000)

    Google Scholar 

  39. Aldman, B.: An analytical approach to the impact biomechanics of head and neck injury. In: AAAM Conference, Montreal, Canada, pp. 446–454 (1986)

    Google Scholar 

  40. Ono, K., Ejima, S., Suzuki, Y., et al.: Prediction of neck injury risk based on the analysis of localized cervical vertebral motion of human volunteers during low-speed rear impacts. In: IRCOBI Conference, Madrid, Spain (2006)

    Google Scholar 

  41. Sato, F., Nakajima, T., Ono, K., et al.: Dynamic cervical vertebral motion of female and male volunteers and analysis of its interaction with head/neck/torso behaviour during low-speed rear impact. In: IRCOBI Conference, Berlin, Germany (2014)

    Google Scholar 

  42. Stemper, B.D., Yoganandan, N., Pintar, F.A.: Gender dependent cervical spine segmental kinematics during whiplash. J. Biomech. 36(9), 1281–1289 (2003)

    Article  Google Scholar 

  43. Stemper, B.D., Yoganandan, N., Pintar, F.A.: Gender- and region-dependent local facet joint kinematics in rear impact. Spine 29(16), 1764–1771 (2004)

    Article  Google Scholar 

  44. Stemper, B.D., Pintar, F.A., Rao, R.D.: The influence of morphology on cervical injury characteristics. Spine 36(25S), S180–S186 (2011)

    Article  Google Scholar 

  45. Vasavada, A.N., Danaraj, J., Siegmund, G.P.: Head and neck anthropometry, vertebral geometry and neck strength in height-matched men and women. J. Biomech. 41(1), 114–121 (2008)

    Article  Google Scholar 

  46. DeRosia, J.: Role of gender and size in biomechanics of rear impact. Doctoral dissertation, Number: 3357947, Marquette University, Texas, USA (2008)

    Google Scholar 

  47. Stemper, B.D., Yoganandan, N., Pintar, F.A., et al.: Anatomical gender differences in cervical vertebrae of size-matched volunteers. Spine 33(2), E44–E49 (2008)

    Article  Google Scholar 

  48. Stemper, B.D., DeRosia, J., Yogananan, N., et al.: Gender dependent cervical spine anatomical differences in size-matched volunteers. Biomed. Sci. Instrum. 45, 149–154 (2009)

    Google Scholar 

  49. Helliwel, P.S., Evans, P.F., Wright, V.: The straight cervical spine: does it indicate muscle spasm? J. Bone Joint Surg. 76(1), 103–106 (1994)

    Article  Google Scholar 

  50. Hardacker, J.W., Shuford, R.F., Capicoto, P.N., et al.: Radiographic standing cervical segmental alignment in adult volunteers without neck symptoms. Spine 22(13), 1472–1480 (1997)

    Article  Google Scholar 

  51. Matsumoto, M., Fujimura, Y., Suzuki, N., et al.: Cervical curvature in acute whiplash injures: prospective comparative study with asymptomatic subjects. Injury 29(10), 775–778 (1998)

    Article  Google Scholar 

  52. Been, E., Shefi, S., Soudack, M.: Cervical lordosis: the effect of age and gender. Spine J. 17, 880–888 (2017)

    Article  Google Scholar 

  53. Brolin, K., Halldin, P., Leijonhufvud, I.: The effect of muscle activation on neck response. Traffic Inj. Prev. 6(1), 67–76 (2005)

    Article  Google Scholar 

  54. Nightingale, R.W., Sganga, J., Cutcliffe, H., et al.: Impact response of the cervical spine: a computational study of the effect of muscle activity, torso constraint, and pre-flexion. J. Biomech. 49, 558–564 (2016)

    Article  Google Scholar 

  55. Östh, J., Mendoza-Vazquez, M., Sato, F., et al.: A female head-neck model for rear impact simulations. J. Biomech. 51, 49–56 (2017)

    Article  Google Scholar 

  56. Klinich, K.D., Ebert, S.M., Van Ee, C.A., et al.: Cervical spine geometry in the automotive seated posture: variations with age, stature, and gender. Stapp Car Crash J. 48, 301–330 (2004)

    Google Scholar 

  57. Stemper, B.D., Yoganandan, N., Pintar, F.A.: Effects of abnormal posture on capsular ligament elongations in a computational model subjected to whiplash loading. J. Biomech. 38(6), 1313–1323 (2005)

    Article  Google Scholar 

  58. Sato, F., Odani, M., Miyazaki, Y., et al.: Effects of whole spine alignment patterns on neck responses in rear end impact. Traffic Inj. Prev. 18(2), 199–206 (2017)

    Article  Google Scholar 

  59. Bogduk, N.: On cervical zygapophysial joint pain. Spine 36(25S), S194–S199 (2011)

    Article  Google Scholar 

  60. Sato, F., Odani, M., Miyazaki, Y.: Investigation of whole spine alignment patterns in automotive seated posture using upright open MRI systems. In: IRCOBI Conference, Malaga, Spain (2016)

    Google Scholar 

  61. Schneider, L.W., Robbins, D.H, Pflüg, M.A., et al.: Development of anthropometrically based design specifications for an advanced adult anthropomorphic dummy family. Final report, UMTRI-83-53-1, University of Michigan Transportation Research Institute, Ann Arbor (1983)

    Google Scholar 

  62. Toyota Motor Corporation: Documentation - Total Human Model for Safety (THUMS) - AF50 Occupant Model: Version 4.0_211103. Nagakute, Japan (2011)

    Google Scholar 

  63. Myklebust, J.B., Pinter, F., Yoganandan, N., et al.: Tensile strength of spinal ligaments. Spine 13(5), 526–531 (1988)

    Article  Google Scholar 

  64. Mattucci, S.F.E., Cronin, D.S.: A method to characterize average cervical spine ligament response based on raw data sets for implementation into injury biomechanics models. J. Mech. Behav. Biomed. Mater. 41, 251–260 (2015)

    Article  Google Scholar 

  65. Pintar, F., Yoganandan, N., Voo, L., Cusick, J.F., et al.: Dynamic characteristics of the human cervical spine. SAE technical paper, no. 952722, pp. 195–202 (1995)

    Google Scholar 

  66. Yoganandan, N., Pintar, F.A., Gennarelli, T.A., et al.: Geometrical effects on the mechanism of cervical spine injury due to head impact. In: IRCOBI Conference, Spain (1999)

    Google Scholar 

  67. Kitagawa, Y., Yamada, K., Motojima, H., et al.: Consideration on gender difference of whiplash associated disorder in low speed rear impact. In: IRCOBI Conference, France (2015)

    Google Scholar 

  68. John, J.D., Yoganandan, N., Arun, M.W.J., et al.: Influence of morphological variations on cervical spine segmental responses from inertial loading. Traffic Inj. Prev. 19(S1), S29–S36 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI, Grant Number JP 16KK0137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fusako Sato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sato, F., Brolin, K., Svensson, M., Linder, A. (2020). Towards Occupant Protections for Both Men and Women. In: Di Nicolantonio, M., Rossi, E., Alexander, T. (eds) Advances in Additive Manufacturing, Modeling Systems and 3D Prototyping. AHFE 2019. Advances in Intelligent Systems and Computing, vol 975. Springer, Cham. https://doi.org/10.1007/978-3-030-20216-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20216-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20215-6

  • Online ISBN: 978-3-030-20216-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics