Abstract
We propose a novel Bayesian decision theoretic deep-neural-network (DNN) framework for image segmentation, enabling us to define a principled measure of uncertainty associated with label probabilities. Our framework estimates uncertainty analytically at test time, unlike the state of the art that relies on approximate and expensive algorithms using sampling or multiple passes. Moreover, our framework leads to a novel Bayesian interpretation of the softmax layer. We propose a novel method to improve DNN calibration. Results on three large datasets show that our framework improves segmentation quality and calibration, and provides more realistic uncertainty estimates, over existing methods.
S. P. Awate—Supported by: Wadhwani Research Centre for Bioengineering (WRCB) IIT Bombay, Department of Biotechnology (DBT) Govt. of India BT/INF/22/SP23026/2017; Nvidia GPU Grant Program; Whiterabbit.ai Inc.; Aira Matrix.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Awate, S.P., Whitaker, R.: Multiatlas segmentation as nonparametric regression. IEEE Trans. Med. Imag. 33(9), 1803–1817 (2014)
Brosch, T., Yoo, Y., Tang, L.Y.W., Li, D.K.B., Traboulsee, A., Tam, R.: Deep convolutional encoder networks for multiple sclerosis lesion segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_1
Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19
Fan, A.C., Fisher, J.W., Wells, W.M., Levitt, J.J., Willsky, A.S.: MCMC curve sampling for image segmentation. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 477–485. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75759-7_58
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Advances in Neural Information Processing Systems (2016)
Gal, Y., Hron, J., Kendall, A.: Concrete dropout. In: Advances in Neural Information Processing Systems, pp. 3584–3593 (2017)
Garg, S., Awate, S.P.: Perfect MCMC sampling in Bayesian MRFs for uncertainty estimation in segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 673–681. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_76
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.: On calibration of modern neural networks. In: International Conference on Machine Learning, pp. 1321–1330 (2017)
Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: IEEE Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)
Havaei, M., et al.: Brain tumor segmentation with deep neural networks. Med. Imag. Anal. 35, 18–31 (2017)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: Advances in Neural Information Processing Systems, pp. 5580–5590 (2017)
Kingma, D., Welling, M.: Auto-encoding variational Bayes. arXiv:1312.6114 (2013)
Le, M., Unkelbach, J., Ayache, N., Delingette, H.: Sampling image segmentations for uncertainty quantification. Med. Imag. Anal. 34, 42–51 (2016)
Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: International Conference on Computer Vision (2017)
Milletari, F., Navab, N., Ahmadi, S.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision, pp. 565–571 (2016)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Shah, M.P., Merchant, S.N., Awate, S.P.: MS-net: mixed-supervision fully-convolutional networks for full-resolution segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 379–387. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00937-3_44
Tanno, R., et al.: Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 611–619. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_70
Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Jena, R., Awate, S.P. (2019). A Bayesian Neural Net to Segment Images with Uncertainty Estimates and Good Calibration. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-20351-1_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20350-4
Online ISBN: 978-3-030-20351-1
eBook Packages: Computer ScienceComputer Science (R0)