Skip to main content

A Novel Sparse Overlapping Modularized Gaussian Graphical Model for Functional Connectivity Estimation

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

  • 5454 Accesses

Abstract

Neural mechanisms underlying brain functional systems remain poorly understood, the problem of estimating statistically robust and biologically meaningful functional connectivity by limited functional magnetic resonance imaging (fMRI) time series containing complex noises remains an open field. Addressing this issue, motivated by recent studies, which have highlighted that brain existing functional overlapping modularized patterns, we propose a novel sparse overlapping modularized Gaussian graphical model (SOMGGM) that estimates functional connectivity by modularizing the connection patterns and allowing each brain region belonging to multiple modules. Extensive experimental results demonstrate that the proposed SOMGGM not only has more power to accurately estimate functional connectivity network structure, but also improves feature extraction and enhances the performance in the brain neurological disease diagnosis task. Additionally, SOMGGM can help to find the brain regions assigned to multiple network modules which are likely important hub nodes. In general, the proposed SOMGGM offers a new computational methodology for brain functional connectivity estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 100(1), 253–258 (2003)

    Article  Google Scholar 

  2. Menon, V.: Large-scale brain networks and psychopathology: a unifying triple network model. Trends cogn. Sci. 15(10), 483–506 (2011)

    Article  Google Scholar 

  3. Huang, H., Liu, X., Jin, Y., Lee, S.W., Wee, C.Y., Shen, D.: Enhancing the representation of functional connectivity networks by fusing multi-view information for autism spectrum disorder diagnosis. Hum. Brain Mapp. 40, 833–854 (2018)

    Article  Google Scholar 

  4. Shen, X., et al.: Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protocols. 12(3), 506 (2017)

    Article  MathSciNet  Google Scholar 

  5. Ng, B., Varoquaux, G., Poline, J.B., Thirion, B.: A Novel sparse group Gaussian graphical model for functional connectivity estimation. Inf. Process. Med. Imaging 23, 256–267 (2013)

    Article  Google Scholar 

  6. Yuan, J., et al.: Spatio-temporal modeling of connectome-scale brain network interactions via time-evolving graphs. Neuroimage 180, 350–369 (2017)

    Article  Google Scholar 

  7. Gorka, A.X., Torrisi, S., Shackman, A.J., Grillon, C., Ernst, M.: Intrinsic functional connectivity of the central nucleus of the amygdala and bed nucleus of the stria terminalis. Neuroimage 168, 392–402 (2018)

    Article  Google Scholar 

  8. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  Google Scholar 

  9. Hsieh, C.-J., Dhillon, I.S., Ravikumar, P.K., Sustik, M.A.: Sparse inverse covariance matrix estimation using quadratic approximation. In: Advances in Neural Information Processing Systems, pp. 2330–2338 (2011)

    Google Scholar 

  10. Combettes, P.L., Pesquet, J.-C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D., Wolkowicz, H. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, vol. 49, pp. 185–212. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-9569-8_10

    Chapter  MATH  Google Scholar 

  11. Qiao, L., Zhang, H., Kim, M., Teng, S., Zhang, L., Shen, D.: Estimating functional brain networks by incorporating a modularity prior. NeuroImage 141, 399–407 (2016)

    Article  Google Scholar 

  12. Hosseini, M.J., and Lee, S.-I.: Learning sparse gaussian graphical models with overlapping blocks. In: Advances in Neural Information Processing Systems, pp. 3808–3816 (2016)

    Google Scholar 

  13. Kudela, M., Harezlak, J., Lindquist, M.A.: Assessing uncertainty in dynamic functional connectivity. NeuroImage 149, 165–177 (2017)

    Article  Google Scholar 

  14. Smith, S.M., et al.: Network modelling methods for FMRI. Neuroimage 54(2), 875–891 (2011)

    Article  Google Scholar 

  15. Huang, S., et al.: Learning brain connectivity of Alzheimer’s disease by sparse inverse covariance estimation. Neuroimage 50(3), 935–949 (2010)

    Article  Google Scholar 

  16. Varoquaux, G., Gramfort, A., Poline, J.-B., Thirion, B.: Brain covariance selection: better individual functional connectivity models using population prior. In: Advances in Neural Information Processing Systems, pp. 2334–2342 (2010)

    Google Scholar 

  17. Ryali, S., Chen, T., Supekar, K., Menon, V.: Estimation of functional connectivity in fMRI data using stability selection-based sparse partial correlation with elastic net penalty. NeuroImage 59(4), 3852–3861 (2012)

    Article  Google Scholar 

  18. Carballedo, A., et al.: Functional connectivity of emotional processing in depression. J. Affect. Disord. 134(1–3), 272–279 (2011)

    Article  Google Scholar 

  19. Pizzagalli, D.A., et al.: Reduced caudate and nucleus accumbens response to rewards in unmedicated individuals with major depressive disorder. Am. J. Psychiatry 166(6), 702–710 (2009)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the General Program of National Natural Science Foundation of China (Grant No. 61876021) and Fundamental Research Funds for the Central Universities (Grant No. 2017EYT36).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, Z., Zhen, Z., Wu, X. (2019). A Novel Sparse Overlapping Modularized Gaussian Graphical Model for Functional Connectivity Estimation. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics