Skip to main content

High-Order Oriented Cylindrical Flux for Curvilinear Structure Detection and Vessel Segmentation

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

In this paper, we present a novel blood vessel structure detector, namely Oriented Cylinder Flux (OCF). Our method formulates blood vessels as curvilinear cylinders with circular cross-sections, incorporating two-step computations. First, OCF computes cross-section responses based on the normal spaces generated by two eigenvectors in the Optimally Oriented Flux (OOF). Second, OCF accumulates the cross-section responses along the curvilinear structures. We then modify OCF to fit into a high-order tensor framework on a unit sphere \(\mathbf {S}^3\), which is able to encode multi-orientation information within a single voxel. A random walker based graphical framework is employed to measure the angular coherence among the decomposed rank-1 tensors. In the synthetic and clinical image experiments, the proposed method achieves high segmentation performance under various radii of the curvilinear structures and different levels of random noise, demonstrating that it has a strong noise-resistant ability and can be used to deal with the shrinking problem, which is one of the main problems in blood vessel segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE TMI 21(2), 61–75 (2002)

    Google Scholar 

  2. Cetin, S., Unal, G.: A higher-order tensor vessel tractography for segmentation of vascular structures. IEEE TMI 34(10), 2172–2185 (2015)

    Google Scholar 

  3. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  4. Grady, L.: Random walks for image segmentation. IEEE TPAMI 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  5. Law, M.W.K., Chung, A.C.S.: An oriented flux symmetry based active contour model for three dimensional vessel segmentation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 720–734. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_52

    Chapter  Google Scholar 

  6. Merveille, O., Talbot, H., Najman, L., Passat, N.: Curvilinear structure analysis by ranking the orientation responses of path operators. IEEE TPAMI 40(2), 304–317 (2018)

    Article  Google Scholar 

  7. Moriconi, S., Zuluaga, M.A., Jäger, H.R., Nachev, P., Ourselin, S., Cardoso, M.J.: VTrails: inferring vessels with geodesic connectivity trees. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 672–684. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_53

    Chapter  Google Scholar 

  8. Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50(5), 955–965 (2003)

    Article  Google Scholar 

  9. Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14(6), 1635–1642 (2008)

    Article  Google Scholar 

  10. Schultz, T., Weickert, J., Seidel, H.P.: A higher-order structure tensor. In: Laidlaw, D., Weickert, J. (eds.) Visualization and Processing of Tensor Fields. MATHVISUAL, pp. 263–279. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88378-4_13

    Chapter  MATH  Google Scholar 

  11. Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE TPAMI 24(12), 1565–1578 (2002)

    Article  Google Scholar 

  12. Zhang, Q., Chung, A.C.S.: 3D vessel segmentation using random walker with oriented flux analysis and direction coherence. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 281–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43775-0_25

    Chapter  Google Scholar 

  13. Zhu, N., Chung, A.C.S.: Random walks with adaptive cylinder flux based connectivity for vessel segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 550–558. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_68

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jierong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Chung, A.C.S. (2019). High-Order Oriented Cylindrical Flux for Curvilinear Structure Detection and Vessel Segmentation. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics