Abstract
In this paper, we present a novel blood vessel structure detector, namely Oriented Cylinder Flux (OCF). Our method formulates blood vessels as curvilinear cylinders with circular cross-sections, incorporating two-step computations. First, OCF computes cross-section responses based on the normal spaces generated by two eigenvectors in the Optimally Oriented Flux (OOF). Second, OCF accumulates the cross-section responses along the curvilinear structures. We then modify OCF to fit into a high-order tensor framework on a unit sphere \(\mathbf {S}^3\), which is able to encode multi-orientation information within a single voxel. A random walker based graphical framework is employed to measure the angular coherence among the decomposed rank-1 tensors. In the synthetic and clinical image experiments, the proposed method achieves high segmentation performance under various radii of the curvilinear structures and different levels of random noise, demonstrating that it has a strong noise-resistant ability and can be used to deal with the shrinking problem, which is one of the main problems in blood vessel segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE TMI 21(2), 61–75 (2002)
Cetin, S., Unal, G.: A higher-order tensor vessel tractography for segmentation of vascular structures. IEEE TMI 34(10), 2172–2185 (2015)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195
Grady, L.: Random walks for image segmentation. IEEE TPAMI 28(11), 1768–1783 (2006)
Law, M.W.K., Chung, A.C.S.: An oriented flux symmetry based active contour model for three dimensional vessel segmentation. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 720–734. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15558-1_52
Merveille, O., Talbot, H., Najman, L., Passat, N.: Curvilinear structure analysis by ranking the orientation responses of path operators. IEEE TPAMI 40(2), 304–317 (2018)
Moriconi, S., Zuluaga, M.A., Jäger, H.R., Nachev, P., Ourselin, S., Cardoso, M.J.: VTrails: inferring vessels with geodesic connectivity trees. In: Niethammer, M., Styner, M., Aylward, S., Zhu, H., Oguz, I., Yap, P.-T., Shen, D. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 672–684. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_53
Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging. Magn. Reson. Med. 50(5), 955–965 (2003)
Schultz, T., Seidel, H.P.: Estimating crossing fibers: a tensor decomposition approach. IEEE Trans. Vis. Comput. Graph. 14(6), 1635–1642 (2008)
Schultz, T., Weickert, J., Seidel, H.P.: A higher-order structure tensor. In: Laidlaw, D., Weickert, J. (eds.) Visualization and Processing of Tensor Fields. MATHVISUAL, pp. 263–279. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-88378-4_13
Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE TPAMI 24(12), 1565–1578 (2002)
Zhang, Q., Chung, A.C.S.: 3D vessel segmentation using random walker with oriented flux analysis and direction coherence. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, S.-L. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 281–291. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43775-0_25
Zhu, N., Chung, A.C.S.: Random walks with adaptive cylinder flux based connectivity for vessel segmentation. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 550–558. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_68
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Wang, J., Chung, A.C.S. (2019). High-Order Oriented Cylindrical Flux for Curvilinear Structure Detection and Vessel Segmentation. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_37
Download citation
DOI: https://doi.org/10.1007/978-3-030-20351-1_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20350-4
Online ISBN: 978-3-030-20351-1
eBook Packages: Computer ScienceComputer Science (R0)