Skip to main content

Predicting Material Requirements in the Automotive Industry Using Data Mining

  • Conference paper
  • First Online:
Business Information Systems (BIS 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 354))

Included in the following conference series:

Abstract

Advanced capabilities in artificial intelligence pave the way for improving the prediction of material requirements in automotive industry applications. Due to uncertainty of demand, it is essential to understand how historical data on customer orders can effectively be used to predict the quantities of parts with long lead times. For determining the accuracy of these predications, we propose a novel data mining technique. Our experimental evaluation uses a unique, real-world data set. Throughout the experiments, the proposed technique achieves high accuracy of up to 98%. Our research contributes to the emerging field of data-driven decision support in the automotive industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, J., Lapira, E., Yang, S., Kao, A.: Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 1(1), 38–41 (2013)

    Article  Google Scholar 

  2. Ghabri, R., Hirmer, P., Mitschang, B.: A hybrid approach to implement data driven optimization into production environments. In: Abramowicz, W., Paschke, A. (eds.) BIS 2018. LNBIP, vol. 320, pp. 3–14. Springer, Cham (2018)

    Chapter  Google Scholar 

  3. Renzi, C., Leali, F., Cavazzuti, M., Andrisano, A.O.: A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems. Int. J. Adv. Manuf. Technol. 72, 403–418 (2014)

    Article  Google Scholar 

  4. Dremel, C., Herterich, M.M., Wulf, J., Waizmann, J.-C., Brenner, W.: How AUDI AG established big data analytics in its digital transformation. MIS Quart. Exec. 16(2), 81–100 (2017)

    Google Scholar 

  5. Leukel, J., Jacob, A., Karaenke, P., Kirn, S., Klein, A.: Individualization of goods and services: towards a logistics knowledge infrastructure for agile supply chains. In: Proceedings of the AAAI Spring Symposium (2011)

    Google Scholar 

  6. Widmer, T., Premm, M., Kirn, S.: A formalization of multiagent organizations in business information systems. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 255, pp. 265–276. Springer, Cham (2016)

    Chapter  Google Scholar 

  7. Meyr, H.: Supply chain planning in the German automotive industry. OR Spectr. 26, 447–470 (2004)

    Article  Google Scholar 

  8. Lee, H.L.: Aligning supply chain strategies with product uncertainties. Calif. Manag. Rev. 44(3), 105–119 (2002)

    Article  Google Scholar 

  9. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval, 2nd edn. ACM Press, New York (1999)

    Google Scholar 

  10. Takeishi, A., Fujimoto, T.: Modularization in the auto industry: interlinked multiple hierarchies of product, production and supplier systems. Int. J. Automot. Technol. Manage. 1(4), 379–396 (2001)

    Article  Google Scholar 

  11. Yoo, Y., Boland, R.J., Lyytinen, K., Majchrzak, A.: Organizing for innovation in the digitized World. Organ. Sci. 23(5), 1398–1408 (2012)

    Article  Google Scholar 

  12. Kurbel, K.E.: MRP: material requirements planning. In: Swamidass, P.M. (ed.) Enterprise Resource Planning and Supply Chain Management, pp. 19–60. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Gupta, A., Maranas, C.D.: Managing demand uncertainty in supply chain planning. Comput. Chem. Eng. 27(8–9), 1219–1227 (2003)

    Article  Google Scholar 

  14. Zorgdrager, M., Curran, R., Verhagen, W., Boesten, B., Water, C.: A predictive method for the estimation of material demand for aircraft non-routine maintenance. In: 20th ISPE International Conference on Concurrent Engineering (2013)

    Google Scholar 

  15. Lee, Y.Y., Kramer, B.A., Hwang, C.L.: Part-period balancing with uncertainty: a fuzzy sets theory approach. Int. J. Prod. Res. 28(10), 1771–1778 (1990)

    Article  Google Scholar 

  16. Du Chih-Ting, T., Wolfe, P.M.: Building an active material requirements planning system. Int. J. Prod. Res. 38(2), 241–252 (2000)

    Article  Google Scholar 

  17. Steuer, D., Korevaar, P., Hutterer, V., Fromm, H.: A similarity-based approach for the all-time demand prediction of new automotive spare parts. In: 51st Hawaii International Conference on System Sciences (HICSS 2018), pp. 1525–1532. Waikoloa Village (2018)

    Google Scholar 

  18. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)

    Article  Google Scholar 

  19. Manning, C.D., Ragahvan, P., Schutze, H.: An Introduction to Information Retrieval. Cambridge University Press, Cambridge (2009). Online ed

    Google Scholar 

  20. McCallum, A., Nigam, K.: A comparison of event models for naive Bayes text classification. In: 15th National Conference on Artificial Intelligence (AAAI 1998): Workshop on Learning for Text Categorization, pp. 41–48, Madison (1998)

    Google Scholar 

  21. Joachims, T.: Text categorization with support vector machines: learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS (LNAI), vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  23. Xu, D., Tian, Y.: A comprehensive survey of clustering algorithms. Annals Data Sci. 2(2), 165–193 (2015)

    Article  MathSciNet  Google Scholar 

  24. Riekert, M., Leukel, J., Klein, A.: Online media sentiment: understanding machine learning-based classifiers. In: 24th European Conference on Information Systems (ECIS 2016), Istanbul (2016)

    Google Scholar 

  25. Tu, Q., Vonderembse, M.A., Ragu-Nathan, T.S., Ragu-Nathan, B.: Measuring modularity-based manufacturing practices and their impact on mass customization capability: a customer-driven perspective. Decis. Sci. 35(2), 147–168 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Federal Ministry of Economic Affairs and Energy under grant ZF4541001ED8. We would like to thank Hansjörg Tutsch for his valuable comments on earlier versions of this paper. We also thank Lyubomir Kirilov for helping to develop and improve parts of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Widmer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Widmer, T., Klein, A., Wachter, P., Meyl, S. (2019). Predicting Material Requirements in the Automotive Industry Using Data Mining. In: Abramowicz, W., Corchuelo, R. (eds) Business Information Systems. BIS 2019. Lecture Notes in Business Information Processing, vol 354. Springer, Cham. https://doi.org/10.1007/978-3-030-20482-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20482-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20481-5

  • Online ISBN: 978-3-030-20482-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics