Skip to main content

Deep Influence Diagrams: An Interpretable and Robust Decision Support System

  • Conference paper
  • First Online:
Business Information Systems (BIS 2019)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 353))

Included in the following conference series:

Abstract

Interpretable decision making frameworks allow us to easily endow agents with specific goals, risk tolerances, and understanding. Existing decision making systems either forgo interpretability, or pay for it with severely reduced efficiency and large memory requirements. In this paper, we outline DeepID, a neural network approximation of Influence Diagrams, that avoids both pitfalls. We demonstrate how the framework allows for the introduction of robustness in a very transparent and interpretable manner, without increasing the complexity class of the decision problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Initially, IDs had one utility node, but this was later relaxed.

  2. 2.

    For example, in Fig. 1 \(\pi (C_2) = D_2\), and \(\pi (U) = \{D_1, D_2, D_3\}\).

References

  1. Abad, C., Iyengar, G.: Portfolio selection with multiple spectral risk constraints. SIAM J. Financ. Math. 6(1), 467–486 (2015)

    Article  MathSciNet  Google Scholar 

  2. Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bielza, C., Gomez, M., Shenoy, P.P.: A review of representation issues and modeling challenges with influence diagrams. Omega 39(3), 227–241 (2011)

    Article  Google Scholar 

  4. Boucherie, R.J., Van Dijk, N.M.: Markov Decision Processes in Practice, vol. 248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47766-4

    Book  MATH  Google Scholar 

  5. Cooper, H., Iyengar, G., Lin, C.Y.: Interpretable robust decision making. In: International Conference on Autonomous Agents and Multiagent Systems, Stockholm (2018)

    Google Scholar 

  6. Diez, F.J., et al.: Markov influence diagrams: a graphical tool for cost-effectiveness analysis. Med. Decis. Making 37(2), 183–195 (2017)

    Article  Google Scholar 

  7. Everitt, T., Ortega, P.A., Barnes, E., Legg, S.: Understanding agent incentives using causal influence diagrams, Part I: single action settings. arXiv preprint arXiv:1902.09980 (2019)

  8. Gomez, M., Bielza, C., del Pozo, J.A.F., Rios-Insua, S.: A graphical decision-theoretic model for neonatal jaundice. Med. Decis. Making 27(3), 250–265 (2007)

    Article  Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5769–5779. Curran Associates Inc. (2017)

    Google Scholar 

  12. Howard, R.A.: Readings on the Principles and Applications of Decision Analysis, vol. 1. Strategic Decisions Group (1983)

    Google Scholar 

  13. Iyengar, G.N.: Robust dynamic programming. Math. Oper. Res. 30(2), 257–280 (2005)

    Article  MathSciNet  Google Scholar 

  14. Jensen, F.V., Nielsen, T.D.: Probabilistic decision graphs for optimization under uncertainty. Ann. Oper. Res. 204(1), 223–248 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  16. Larochelle, H., Murray, I.: The neural autoregressive distribution estimator. In: AISTATS, vol. 1, p. 2 (2011)

    Google Scholar 

  17. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

  18. Magni, P., Quaglini, S., Marchetti, M., Barosi, G.: Deciding when to intervene: a Markov decision process approach. Int. J. Med. Informatics 60(3), 237–253 (2000)

    Article  Google Scholar 

  19. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  20. Nilim, A., El Ghaoui, L.: Robust control of Markov decision processes with uncertain transition matrices. Oper. Res. 53(5), 780–798 (2005)

    Article  MathSciNet  Google Scholar 

  21. Virto, M.A., Martin, J., Insua, D.R., Moreno-Diaz, A.: Approximate solutions of complex influence diagrams through MCMC methods. In: Probabilistic Graphical Models (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal James Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cooper, H.J., Iyengar, G., Lin, CY. (2019). Deep Influence Diagrams: An Interpretable and Robust Decision Support System. In: Abramowicz, W., Corchuelo, R. (eds) Business Information Systems. BIS 2019. Lecture Notes in Business Information Processing, vol 353. Springer, Cham. https://doi.org/10.1007/978-3-030-20485-3_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20485-3_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20484-6

  • Online ISBN: 978-3-030-20485-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics