Abstract
Interpretable decision making frameworks allow us to easily endow agents with specific goals, risk tolerances, and understanding. Existing decision making systems either forgo interpretability, or pay for it with severely reduced efficiency and large memory requirements. In this paper, we outline DeepID, a neural network approximation of Influence Diagrams, that avoids both pitfalls. We demonstrate how the framework allows for the introduction of robustness in a very transparent and interpretable manner, without increasing the complexity class of the decision problem.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Initially, IDs had one utility node, but this was later relaxed.
- 2.
For example, in Fig. 1 \(\pi (C_2) = D_2\), and \(\pi (U) = \{D_1, D_2, D_3\}\).
References
Abad, C., Iyengar, G.: Portfolio selection with multiple spectral risk constraints. SIAM J. Financ. Math. 6(1), 467–486 (2015)
Artzner, P., Delbaen, F., Eber, J.M., Heath, D.: Coherent measures of risk. Math. Financ. 9(3), 203–228 (1999)
Bielza, C., Gomez, M., Shenoy, P.P.: A review of representation issues and modeling challenges with influence diagrams. Omega 39(3), 227–241 (2011)
Boucherie, R.J., Van Dijk, N.M.: Markov Decision Processes in Practice, vol. 248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47766-4
Cooper, H., Iyengar, G., Lin, C.Y.: Interpretable robust decision making. In: International Conference on Autonomous Agents and Multiagent Systems, Stockholm (2018)
Diez, F.J., et al.: Markov influence diagrams: a graphical tool for cost-effectiveness analysis. Med. Decis. Making 37(2), 183–195 (2017)
Everitt, T., Ortega, P.A., Barnes, E., Legg, S.: Understanding agent incentives using causal influence diagrams, Part I: single action settings. arXiv preprint arXiv:1902.09980 (2019)
Gomez, M., Bielza, C., del Pozo, J.A.F., Rios-Insua, S.: A graphical decision-theoretic model for neonatal jaundice. Med. Decis. Making 27(3), 250–265 (2007)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5769–5779. Curran Associates Inc. (2017)
Howard, R.A.: Readings on the Principles and Applications of Decision Analysis, vol. 1. Strategic Decisions Group (1983)
Iyengar, G.N.: Robust dynamic programming. Math. Oper. Res. 30(2), 257–280 (2005)
Jensen, F.V., Nielsen, T.D.: Probabilistic decision graphs for optimization under uncertainty. Ann. Oper. Res. 204(1), 223–248 (2013)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
Larochelle, H., Murray, I.: The neural autoregressive distribution estimator. In: AISTATS, vol. 1, p. 2 (2011)
Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)
Magni, P., Quaglini, S., Marchetti, M., Barosi, G.: Deciding when to intervene: a Markov decision process approach. Int. J. Med. Informatics 60(3), 237–253 (2000)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Nilim, A., El Ghaoui, L.: Robust control of Markov decision processes with uncertain transition matrices. Oper. Res. 53(5), 780–798 (2005)
Virto, M.A., Martin, J., Insua, D.R., Moreno-Diaz, A.: Approximate solutions of complex influence diagrams through MCMC methods. In: Probabilistic Graphical Models (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cooper, H.J., Iyengar, G., Lin, CY. (2019). Deep Influence Diagrams: An Interpretable and Robust Decision Support System. In: Abramowicz, W., Corchuelo, R. (eds) Business Information Systems. BIS 2019. Lecture Notes in Business Information Processing, vol 353. Springer, Cham. https://doi.org/10.1007/978-3-030-20485-3_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-20485-3_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20484-6
Online ISBN: 978-3-030-20485-3
eBook Packages: Computer ScienceComputer Science (R0)