Skip to main content

A Clinical Decision Support System to Help the Interpretation of Laboratory Results and to Elaborate a Clinical Diagnosis in Blood Coagulation Domain

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11507))

Included in the following conference series:

Abstract

Hemophilia is a rare hemorrhagic disorder caused by clotting factor deficiencies that leads to a less efficient coagulation system. Treatments of this pathology rely on a patient’s subjective assessment which reflects a need for a laboratory assay able to predict the clinical patient phenotype. According to the literature, global assays such as thrombin generation (TG), are good predictors of bleeding episodes and therefore seem to be good candidates to fit this need. Nevertheless, the result of the TG assay, known as thrombogram, is difficult to interpret for non-expert clinicians. In this paper, we present a machine learning-based clinical decision support system which goal is to help clinical decision making. In doing so, we have adopted several approaches in order to evaluate well-known machine learning algorithms, in terms of accuracy and robustness, on a thrombogram database generated using numerical simulations. Obtained results, 95.57% of accuracy using a cascade of a SVM and MLPs to classify all categories and 98.10% of accuracy for the binary case hemophilia A/B, prove that our proposal can efficiently diagnose hemophilia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57301-1_5

    Chapter  Google Scholar 

  2. Alonso, C., Rodriguez, J.: Time series classification by boosting interval based literals. Inteligencia Artif. 4(11), 2–11 (2000)

    Article  Google Scholar 

  3. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In Proceedings of the 19th International Conference on Neural Information Processing Systems, NIPS 2006, pp. 153–160. MIT Press, Cambridge (2006)

    Google Scholar 

  4. Boxwala, A.A., et al.: GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines (2004)

    Article  Google Scholar 

  5. Chaovalit, P., Gangopadhyay, A., Karabatis, G., Chen, Z.: Discrete wavelet transform-based time series analysis and mining. ACM Comput. Surv. 43(2), 1–37 (2011)

    Article  Google Scholar 

  6. Chaovalitwongse, W.A., Fan, Y.-J., Sachdeo, R.C.: On the time series K-Nearest Neighbor classification of abnormal brain activity. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 37(6), 1005–1016 (2007)

    Article  Google Scholar 

  7. Esmael, B., Arnaout, A., Fruhwirth, R.K., Thonhauser, G.: Multivariate time series classification by combining trend-based and value-based approximations. In: Murgante, B., et al. (eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp. 392–403. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31128-4_29

    Chapter  Google Scholar 

  8. Gudmundsson, S., Runarsson, T.P., Sigurdsson, S.: Support vector machines and dynamic time warping for time series. In: 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), pp. 2772–2776 (2008)

    Google Scholar 

  9. Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: a survey and novel approach. In: Data Mining in Time Series Databases, pp. 1–21 (2003)

    Google Scholar 

  10. Kerdelo: Méthodes informatiques pour l’expérimentation in virtuo de la cinétique biochimique. Application à la coagulation du sang. Modélisation et simulation. Thèse, Université Rennes 1 (2006)

    Google Scholar 

  11. Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: International Joint Conference on Artificial Intelligence, vol. 14, no. 12, pp. 1137–1143 (1995)

    Google Scholar 

  12. Mantovani, R., Rossi, A., Vanschoren, J., Bischl, B., De Carvalho, A.: Effectiveness of random search in SVM hyper-parameter tuning. In: International Joint Conference on Neural Networks, pp. 1–8. IEEE (2015)

    Google Scholar 

  13. Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-based classification of time-series data. Inf. Process. Manage. 0056, 49–61 (2001)

    Google Scholar 

  14. Nguyen, M.H., de la Torre, F.: Optimal feature selection for support vector machines. Pattern Recogn. 43(3), 584–591 (2010)

    Article  Google Scholar 

  15. Popivanov, I., Miller, R.: Similarity search over time-series data using wavelets. In: Proceedings 18th International Conference on Data Engineering, pp. 212–221. IEEE Computer Society (2002)

    Google Scholar 

  16. Quinlan, J.R.: C4.5: Programs for Machine Learning, vol. 1 (1992)

    Google Scholar 

  17. Ratanamahatana, C., Keogh, E.: Everything you know about dynamic time warping is wrong. In: Third Workshop on Mining Temporal and Sequential Data, pp. 22–25 (2004)

    Google Scholar 

  18. RĂ¼ping, S.: SVM kernels for time series analysis. Time, p. 8 (2001)

    Google Scholar 

  19. Samwald, M., Fehre, K., de Bruin, J., Adlassnig, K.P.: The Arden Syntax standard for clinical decision support: experiences and directions. J. Biomed. Inform. 45(4), 711–718 (2012)

    Article  Google Scholar 

  20. Shin, H., Markey, M.K.: A machine learning perspective on the development of clinical decision support systems utilizing mass spectra of blood samples (2006)

    Google Scholar 

  21. Shortliffe, E.H.: Computer-Based Medical Consultations: Mycin. Elsevier, New York (1976)

    Google Scholar 

  22. Sutton, D.R., Fox, J.: The syntax and semantics of the PROforma guideline modeling language. J. Am. Med. Inform. Assoc. 10(5), 433–443 (2003)

    Article  Google Scholar 

  23. Wu, Y.-L., Agrawal, D., El Abbadi, A.: A comparison of DFT and DWT based similarity search in time-series databases. In: Proceedings of the 9th International Conference on Information and Knowledge Management (CIKM), vol. 35(2000-08), pp. 488–495 (2000)

    Google Scholar 

  24. Young, G., Sorensen, B., Dargaud, Y., Negrier, C., Brummel-Ziedins, K., Key, N.: Thrombin generation and whole blood viscoelastic assays in the management of hemophilia: current state of art and future perspectives. Blood 121(11), 1944–1950 (2013)

    Article  Google Scholar 

  25. Yu, C.H., Bhatnagar, M., Hogen, R., Mao, D., Farzindar, A., Dhanireddy, K.: Anemic status prediction using multilayer perceptron neural network model, vol. 50, pp. 213–220 (2017)

    Google Scholar 

  26. Zhang, D., Zuo, W., Zhang, D., Zhang, H.: Time series classification using support vector machine with Gaussian elastic metric kernel. In: Proceedings - International Conference on Pattern Recognition, pp. 29–32 (2010)

    Google Scholar 

  27. Zhang, Y.: Prediction of financial time series with hidden Markov models (2004). https://core.ac.uk/download/pdf/56371948.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francois Lasson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lasson, F., Delamarre, A., Redou, P., Buche, C. (2019). A Clinical Decision Support System to Help the Interpretation of Laboratory Results and to Elaborate a Clinical Diagnosis in Blood Coagulation Domain. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics