Abstract
In robotics, semantic mapping refers to the construction of a rich representation of the environment that includes high level information needed by the robot to accomplish its tasks. Building a semantic map requires algorithms to process sensor data at different levels: geometric, topological and object detections/categories, which must be integrated into an unified model. This paper describes a robotic architecture that successfully builds such semantic maps for indoor environments. For this purpose, within a ROS-based ecosystem, we apply a state-of-the-art Convolutional Neural Network (CNN), concretely YOLOv3, for detecting objects in images. The detection results are placed within a geometric map of the environment making use of a number of modules of the architecture: robot localization, camera extrinsic calibration, data form a depth camera, etc. We demonstrate the suitability of the proposed framework by building semantic maps of several home environments from the Robot@Home dataset, using Unity 3D as a tool to visualize the maps as well as to provide future robotic developments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857 (2017)
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: International Conference on Learning Representations (ICLR) (2015)
Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: Building multiversal semantic maps for mobile robot operation. Knowl.-Based Syst. 119, 257–272 (2017)
Pinto, N., Cox, D.D., DiCarlo, J.J.: Why is real-world visual object recognition hard? PLOS Comput. Biol. 4(1), 1–6 (2008)
Ruiz-Sarmiento, J.R., Galindo, C., Gonzalez-Jimenez, J.: A survey on learning approaches for undirected graphical models. application to scene object recognition. Int. J. Approximate Reasoning 83(C), 434–451 (2017)
Kasaei, S.H., Oliveira, M., Lim, G.H., Seabra Lopes, L., Tomé, A.M.: Interactive open-ended learning for 3D object recognition: an approach and experiments. J. Intell. Robot. Syst. 80, 537–553 (2015)
Ruiz-Sarmiento, J.R., Galindo, C., Gonzalez-Jimenez, J.: UPGMpp: a software library for contextual object recognition. In: 3rd Workshop on Recognition and Action for Scene Understanding (REACTS) (2015)
Han, J., Zhang, D., Cheng, G., Liu, N., Xu, D.: Advanced deep-learning techniques for salient and category-specific object detection: a survey. IEEE Signal Process. Mag. 35(1), 84–100 (2018)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017)
Redmon, J., Farhadi, A.: Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (2018)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Dai, J., Li, Y., He, K., Sun, J.: R-FCN: object detection via region-based fully convolutional networks. In: Proceedings of the 30th International Conference on Neural Information Processing Systems NIPS2016, pp. 379–387. Curran Associates Inc., USA (2016)
Everingham, M., Eslami, S.M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2015)
Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
Kostavelis, I., Gasteratos, A.: Semantic mapping for mobile robotics tasks: a survey. Robot. Auton. Syst. 66, 86–103 (2015)
Monroy, J., Ruiz-Sarmiento, J.R., Moreno, F.A., Melendez-Fernandez, F., Galindo, C., Gonzalez-Jimenez, J.: A semantic-based gas source localization with a mobile robot combining vision and chemical sensing. Sensors 18(12), 4174 (2018)
Zender, H., Mozos, O.M., Jensfelt, P., Kruijff, G.J., Burgard, W.: Conceptual spatial representations for indoor mobile robots. Robot. Auton. Syst. 56(6), 493–502 (2008)
Pronobis, A., Jensfelt, P.: Large-scale semantic mapping and reasoning with heterogeneous modalities. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), pp. 3515–3522, May 2012
Pangercic, D., Pitzer, B., Tenorth, M., Beetz, M.: Semantic object maps for robotic housework - representation, acquisition and use. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4644–4651, October 2012
Günther, M., Ruiz-Sarmiento, J.R., Galindo, C., Gonzalez-Jimenez, J., Hertzberg, J.: Context-aware 3D object anchoring for mobile robots. Robot. Auton. Syst. 110, 12–32 (2018)
Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Workshop on Open Source Software, vol. 3, p. 5. Kobe, Japan (2009)
Juliani, A., et al.: Unity: A general platform for intelligent agents. arXiv preprint arXiv:1809.02627 (2018)
Codd-Downey, R., Forooshani, P.M., Speers, A., Wang, H., Jenkin, M.: From ROS to unity: leveraging robot and virtual environment middleware for immersive teleoperation. In: 2014 IEEE International Conference on Information and Automation (ICIA), pp. 932–936, July 2014
Hu, Y., Meng, W.: ROSUnitySim: development and experimentation of a real-time simulator for multi-unmanned aerial vehicle local planning. Simulation 92(10), 931–944 (2016)
Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: Robot@home, a robotic dataset for semantic mapping of home environments. Int. J. Robot. Res. 36(2), 131–141 (2017)
Fox, D.: KLD-sampling: adaptive particle filters. In: Advances in Neural Information Processing Systems, pp. 713–720 (2002)
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection, pp. 779–788 (2016)
Redmon, J., Farhadi, A.: Yolo9000: Better, faster, stronger. arXiv preprint arXiv:1612.08242 (2016)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection, pp. 2980–2988 (2017)
Bjelonic, M.: YOLO ROS: real-time object detection for ROS (2016–2018). https://github.com/leggedrobotics/darknet_ros
Wang, V., Salim, F., Moskovits, P.: The Definitive Guide to HTML5 WebSocket, vol. 1. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4302-4741-8
González-Jiménez, J., Galindo, C., Ruiz-Sarmiento, J.: Technical improvements of the giraff telepresence robot based on users’ evaluation. In: 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, pp. 827–832. IEEE (2012)
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 815–823, 07–12 June 2015
Ruiz-Sarmiento, J.R., Galindo, C., Monroy, J., Moreno, F.A., Gonzalez-Jimenez, J.: Ontology-based conditional random fields for object recognition. Knowl.-Based Syst. 168, 100–108 (2019)
Ruiz-Sarmiento, J.R., Galindo, C., González-Jiménez, J.: Scene object recognition for mobile robots through semantic knowledge and probabilistic graphical models. Expert Syst. Appl. 42(22), 8805–8816 (2015)
Acknowledgments
This work has been supported by the research projects WISER (DPI2017-84827-R), funded by the Spanish Government and financed by the European Regional Development’s funds (FEDER), MoveCare (ICT-26-2016b-GA-732158), funded by the European H2020 program, and by a postdoc contract from the I-PPIT program of the University of Málaga, and the UG PHD scholarship program from the University of Groningen.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Chaves, D., Ruiz-Sarmiento, J.R., Petkov, N., Gonzalez-Jimenez, J. (2019). Integration of CNN into a Robotic Architecture to Build Semantic Maps of Indoor Environments. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_27
Download citation
DOI: https://doi.org/10.1007/978-3-030-20518-8_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20517-1
Online ISBN: 978-3-030-20518-8
eBook Packages: Computer ScienceComputer Science (R0)