Skip to main content

About Filter Criteria for Feature Selection in Regression

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11507))

Included in the following conference series:

Abstract

Selecting the best group of features from high-dimensional datasets is an important challenge in machine learning. Indeed problems with hundreds of features have now become usual. In the context of filter methods, the selected relevance criterion used for filtering is the key factor of a feature selection method. To select an appropriate criterion among the numerous existing ones, this paper proposes a list of six necessary properties. This paper describes then three relevance criteria, the mutual information, the noise variance and the adjusted R-squared, and compares them in the view of the aforementioned properties. Any new, or popular, criterion could be analysed in the light of these properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Battiti, R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Netw. 5, 537–550 (1994)

    Article  Google Scholar 

  2. Bing, X., Mengjie, Z., Will, N., B., Xin, Y.: A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2016)

    Google Scholar 

  3. Brown, G., Pocock, A., Zhao, M., Lujan, M.: Conditional likelihood maximisation: a unifying framework for mutual information feature selection. J. Mach. Learn. Res. 13, 27–66 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Degeest, A., Verleysen, M., Frénay, B.: Feature ranking in changing environments where new features are introduced. In: 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8, July 2015

    Google Scholar 

  5. Degeest, A., Verleysen, M., Frénay, B.: Smoothness bias in relevance estimators for feature selection in regression. In: 2018 International Conference on Artificial Intelligence Applications and Innovations (IJCNN), pp. 285–294 (2018)

    Google Scholar 

  6. Doquire, G., Verleysen, M.: A comparison of multivariate mutual information estimators for feature selection. In: Proceeding of ICPRAM 2012 (2012)

    Google Scholar 

  7. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004)

    Article  MathSciNet  Google Scholar 

  8. Eirola, E., Lendasse, A., Corona, F., Verleysen, M.: The delta test: the 1-nn estimator as a feature selection criterion. In: Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN), pp. 4214–4222, July 2014

    Google Scholar 

  9. Eirola, E., Liitiäinen, E., Lendasse, A., Corona, F., Verleysen, M.: Using the delta test for variable selection. In: Proceedings of ESANN 2008 (2008)

    Google Scholar 

  10. François, D., Rossi, F., Wertz, V., Verleysen, M.: Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70(7–9), 1276–1288 (2007)

    Article  Google Scholar 

  11. Frénay, B., Doquire, G., Verleysen, M.: Theoretical and empirical study on the potential inadequacy of mutual information for feature selection in classification. Neurocomputing 112, 64–78 (2013)

    Article  Google Scholar 

  12. Frénay, B., van Heeswijk, M., Miche, Y., Verleysen, M., Lendasse, A.: Feature selection for nonlinear models with extreme learning machines. Neurocomputing 102, 111–124 (2013)

    Article  Google Scholar 

  13. Gao, W., Kannan, S., Oh, S., Viswanath, P.: Estimating mutual information for discrete-continuous mixtures. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30, pp. 5986–5997. Curran Associates Inc, Red Hook (2017)

    Google Scholar 

  14. Gómez-Verdejo, V., Verleysen, M., Fleury, J.: Information-theoretic feature selection for functional data classification. Neurocomputing 72(16–18), 3580–3589 (2009)

    Article  Google Scholar 

  15. Guillén, A., Sovilj, D., Mateo, F., Rojas, I., Lendasse, A.: New methodologies based on delta test for variable selection in regression problems. In: Workshop on Parallel Architectures and Bioinspired Algorithms, Toronto, Canada (2008)

    Google Scholar 

  16. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  17. Hancer, E., Xue, B., Zhang, M.: Differential evolution for filter feature selection based on information theory and feature ranking. Knowl.-Based Syst. 140, 103–119 (2018)

    Article  Google Scholar 

  18. Karegowda, A.G., Jayaram, M.A., Manjunath, A.S.: Feature subset selection problem using wrapper approach in supervised learning. Int. J. Comput. Appl. 1(7), 13–17 (2010)

    Google Scholar 

  19. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97, 273–324 (1997)

    Article  Google Scholar 

  20. Kozachenko, L.F., Leonenko, N.: Sample estimate of the entropy of a random vector. Probl. Inform. Transm. 23, 95–101 (1987)

    MATH  Google Scholar 

  21. Kraskov, A., Stögbauer, H., Grassberger, P.: Estimating mutual information. Phys. Rev. E 69, 066138 (2004)

    Article  MathSciNet  Google Scholar 

  22. Li, J., et al.: Feature selection: a data perspective. ACM Comput. Surv. 50(6), 94:1–94:45 (2017). https://doi.org/10.1145/3136625

    Article  Google Scholar 

  23. Paul, J., D’Ambrosio, R., Dupont, P.: Kernel methods for heterogeneous feature selection. Neurocomputing 169, 187–195 (2015)

    Article  Google Scholar 

  24. Schaffernicht, E., Kaltenhaeuser, R., Verma, S.S., Gross, H.-M.: On estimating mutual information for feature selection. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010. LNCS, vol. 6352, pp. 362–367. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15819-3_48

    Chapter  Google Scholar 

  25. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423), 623–656 (1948)

    Article  MathSciNet  Google Scholar 

  26. Vergara, J.R., Estévez, P.A.: A review of feature selection methods based on mutual information. Neural Comput. Appl. 24, 175–186 (2014)

    Article  Google Scholar 

  27. Verleysen, M., Rossi, F., François, D.: Advances in feature selection with mutual information. In: Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.) Similarity-Based Clustering. LNCS (LNAI), vol. 5400, pp. 52–69. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01805-3_4

    Chapter  Google Scholar 

  28. Yu, Q., Séverin, E., Lendasse, A.: Variable selection for financial modeling. In: Proceedings of the CEF 2007, 13th International Conference on Computing in Economics and Finance, Montréal, Quebec, Canada, pp. 237–241 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Degeest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Degeest, A., Verleysen, M., Frénay, B. (2019). About Filter Criteria for Feature Selection in Regression. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics