Skip to main content

Machine Learning as a Means to Adapt Requirement Changes for SDN Deployment Process in SDN Migration

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11507))

Included in the following conference series:

  • 2521 Accesses

Abstract

The deployment of SDN in legacy network has gained popularity across network operators as next generation network architecture. However, full deployment of SDN faces challenges in economical, organizational, and technical aspects. Hence, the deployment of SDN should be incremental over months or even years, and limited numbers of the nodes are upgraded to SDN-enabled one in each period. This forms a hybrid SDN (H-SDN) network which legacy and SDN nodes co-exist in the same network. Importantly, which and when a node should be replaced to SDN node are the common question which impacts the performance of a hybrid SDN network. Efforts to date primarily focus on determining sequence for migration which maximize the performance of traffic engineering (TE) in H-SDN network. However, most works do not take into consideration of the changes that may happen over the periods of SDN deployment. The possibility of these changes requires adaptation techniques to ensure effective migration sequence to cater present and future needs. In this article, we aim to identify the gap and propose the opportunity in which techniques originated from machine learning (ML) may play an important role in solving problem of incremental SDN deployment by alleviating the issues the occur during SDN migration as well as to improve the H-SDN deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Juniper Networks Inc.: What’s Behind Network Downtime? (2008)

    Google Scholar 

  2. Akyildiz, I.F., Lee, A., Wang, P., Luo, M., Chou, W.: A roadmap for traffic engineering in software defined networks. Comput. Netw. 71, 1–30 (2014)

    Article  Google Scholar 

  3. Alexander, D.S., et al.: The switchware active network architecture. IEEE Netw. 12(3), 29–36 (1998)

    Article  Google Scholar 

  4. Morris, R., Kohler, E., Jannotti, J., Kaashoek, M.F.: The click modular router. Most, no, Section 2, pp. 217–231 (2008)

    Article  Google Scholar 

  5. Handley, M., Hodson, O., Kohler, E.: XORP: an open platform for network research. ACM SIGCOMM Comput. Commun. Rev. 33(1), 53–57 (2003)

    Article  Google Scholar 

  6. Chen, J., Zheng, X., Rong, C.: Survey on software-defined networking. In: Qiang, W., Zheng, X., Hsu, C.-H. (eds.) CloudCom-Asia 2015. LNCS, vol. 9106, pp. 115–124. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28430-9_9

    Chapter  Google Scholar 

  7. Vissicchio, S., Vanbever, L., Bonaventure, O.: Opportunities and research challenges of hybrid software defined networks. ACM SIGCOMM Comput. Commun. Rev. 44(2), 70–75 (2014)

    Article  Google Scholar 

  8. Amin, R., Reisslein, M., Shah, N.: Hybrid SDN networks: a survey of existing approaches. IEEE Commun. Surv. Tutor. 20(4), 3259–3306 (2018)

    Article  Google Scholar 

  9. Vissicchio, S., Cittadini, L., Bonaventure, O., Xie, G.G., Vanbever, L.: On the co-existence of distributed and centralized routing control-planes. Proc. - IEEE INFOCOM 26, 469–477 (2015)

    Google Scholar 

  10. Farias, F., Carvalho, I., Cerqueira, E., Abelém, A., Rothenberg, C.E., Stanton, M.: LegacyFlow: bringing openflow to legacy network environments (2011)

    Google Scholar 

  11. Stringer, J.P., Fu, Q., Lorier, C., Nelson, R., Rothenberg, C.E.: Cardigan: deploying a distributed routing fabric. In: Proceedings of Second ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (HotSDN 2013), pp. 169–170 (2013)

    Google Scholar 

  12. Levin, D., Canini, M., Schmid, S., Feldmann, A.: Incremental SDN deployment in enterprise networks. In: Proceedings of ACM SIGCOMM 2013 Conference on SIGCOMM - SIGCOMM 2013, p. 473 (2013)

    Google Scholar 

  13. Levin, D., Canini, M., Schmid, S., Feldmann, A.: Panopticon: reaping the benefits of partial SDN deployment in enterprise networks. In: USENIX Annual Technical Conference, pp. 333–345 (2014)

    Google Scholar 

  14. Poularakis, K., Iosifidis, G., Smaragdakis, G., Tassiulas, L.: One step at a time: optimizing SDN upgrades in ISP networks. In: Proceedings - IEEE INFOCOM, pp. 1–9 (2017)

    Google Scholar 

  15. Das, T., Caria, M., Jukan, A., Hoffmann, M.: Insights on SDN migration trajectory. IEEE International Conference on Communications, pp. 5348–5353 (2015)

    Google Scholar 

  16. Tanha, M., Sajjadi, D., Ruby, R., Pan, J.: Traffic engineering enhancement by progressive migration to SDN. IEEE Commun. Lett. 22(3), 438–441 (2018)

    Article  Google Scholar 

  17. Hong, D.K., Ma, Y., Banerjee, S., Mao, Z.M.: Incremental deployment of SDN in hybrid enterprise and ISP networks. In: Proceedings of the ACM Symposium on SDN Research, SOSR 2016, pp. 1–7 (2016)

    Google Scholar 

  18. Guo, Y., Wang, Z., Yin, X., Shi, X., Wu, J., Zhang, H.: Incremental deployment for traffic engineering in hybrid SDN network. In: 2015 IEEE 34th International Performance Computing and Communications Conference on IPCCC 2015 (2016)

    Google Scholar 

  19. Jia, X., Jiang, Y., Guo, Z.: Incremental switch deployment for hybrid software-defined networks. In: Proceedings of Conference on Local Computer Networks, LCN, pp. 571–574 (2016)

    Google Scholar 

  20. Yuan, T., Huang, X., Ma, M., Zhang, P.: Migration to software-defined networks: the customers’ view. China Commun. 14(10), 1–11 (2017)

    Article  Google Scholar 

  21. Caria, M., Das, T., Jukan, A., Hoffmann, M.: Divide and conquer: partitioning OSPF networks with SDN. In: Proceedings of 2015 IFIP/IEEE Symposium on Integrated Network and Service Management, IM 2015, pp. 467–474 (2015)

    Google Scholar 

  22. Caria, M., Jukan, A., Hoffmann, M.: SDN partitioning: a centralized control plane for distributed routing protocols. IEEE Trans. Netw. Serv. Manag. 13(3), 381–393 (2016)

    Article  Google Scholar 

  23. Casey, D.J., Mullins, B.E.: SDN shim: controlling legacy devices. In: Proceedings of Conference on Local Computer Networks, LCN, 26–29 October 2015, pp. 169–172 (2015)

    Google Scholar 

  24. Kronberger, C., Schondienst, T., Schupke, D.A.: Impact and handling of demand uncertainty in multiperiod planned networks. In: IEEE International Conference on Communications (2011)

    Google Scholar 

  25. Cisco: Cisco Visual Networking Index: Forecast and Trends, 2017–2022 (2018). https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white-paper-c11-741490.html#_Toc529314176. Accessed 11 Feb 2019

  26. Türk, S., Lehnert, R., Radeke, R.: Network migration using ant colony optimization. In: 2010 9th Conference Telecommunication Media Internet, CTTE 2010 (2010)

    Google Scholar 

  27. Aibin, M.: Traffic prediction based on machine learning for elastic optical networks. Opt. Switch. Netw. 30, 33–39 (2018)

    Article  Google Scholar 

  28. Vinayakumar, R., Soman, K.P., Poornachandran, P.: Applying deep learning approaches for network traffic prediction. In: 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017, pp. 2353–2358 (2017)

    Google Scholar 

  29. Boutaba, R., et al.: A comprehensive survey on machine learning for networking: evolution, applications and research opportunities. J. Internet Serv. Appl. 9(1), 147–169 (2018)

    Article  Google Scholar 

  30. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceeding COLT 1992 Proceedings of Fifth Annual Workshop on Computer Learning Theory, pp. 144–152 (1992)

    Google Scholar 

  31. Chen, Z., Wen, J., Geng, Y.: Predicting future traffic using hidden Markov models. In: Proceedings of International Conference on Network Protocols ICNP, vol. 2016–December, NetworkML, pp. 1–6 (2016)

    Google Scholar 

  32. Wang, M., Cui, Y., Wang, X., Xiao, S., Jiang, J.: Machine learning for networking: workflow, advances and opportunities. IEEE Netw. 32(2), 92–99 (2018)

    Article  Google Scholar 

  33. Dietterich, T.G.: Reinforcement learning in autonomic computing: a manifesto and case studies. IEEE Internet Comput. 11, 22–30 (2007)

    Article  Google Scholar 

  34. Guo, Y., Wang, Z., Yin, X., Shi, X., Wu, J.: Traffic engineering in hybrid SDN networks with multiple traffic matrices. Comput. Netw. 126, 187–199 (2017)

    Article  Google Scholar 

  35. Cheng, T.Y., Jia, X.: Compressive traffic monitoring in hybrid SDN. IEEE J. Sel. Areas Commun. 36(12), 2731–2743 (2018)

    Article  Google Scholar 

  36. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  37. Xie, J., et al.: A survey of machine learning techniques applied to software defined networking (SDN): research issues and challenges. IEEE Commun. Surv. Tutor. 21(1), 393–430 (2018)

    Article  Google Scholar 

  38. Jose, A.S., Nair, L.R., Paul, V.: Data mining in software defined networking-a survey. In: 2017 International Conference on Computing Methodologies and Communication (ICCMC). IEEE (2017)

    Google Scholar 

  39. Xu, G., Mu, Y., Liu: Inclusion of artificial intelligence in communication networks and services. ITU J. ICT Discoveries, Special 1, 1–6 (2017)

    Google Scholar 

  40. Del Testa, D., et al.: Estimating the number of receiving nodes in 802.11 networks via machine learning techniques. In: 2016 IEEE Global Communications Conference (GLOBECOM). IEEE (2016)

    Google Scholar 

  41. Amaral, P., et al.: Machine learning in software defined networks: data collection and traffic classification. In: 2016 IEEE 24th International Conference on Network Protocols (ICNP). IEEE (2016)

    Google Scholar 

  42. Gerber, A., Doverspike, R.: Traffic types and growth in backbone networks. In: Optical Fiber Communication Conference. Optical Society of America (2011)

    Google Scholar 

  43. Klymash, M., et al.: Method for optimal use of 4G/5G heterogeneous network resources under M2 M/IoT traffic growth conditions. In: 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo). IEEE (2017)

    Google Scholar 

  44. Rodrigues, H., et al.: Traffic optimization in multi-layered WANs using SDN. In: 2014 IEEE 22nd Annual Symposium on High-Performance Interconnects. IEEE (2014)

    Google Scholar 

Download references

Acknowledgment

This research work is fully supported by Telekom Malaysia (TM) R&D and Multimedia University (MMU), Cyberjaya, Malaysia. We are very thankful to the team of TM R&D for providing the support to our research studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tan Saw Chin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, S.H., Chin, T.S., Binlun, J.N., Kwang, L.C., Kapsin, R., Yusoff, Z. (2019). Machine Learning as a Means to Adapt Requirement Changes for SDN Deployment Process in SDN Migration. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics