Skip to main content

Evolving Balancing Controllers for Biped Characters in Games

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11507))

Included in the following conference series:

Abstract

This paper compares two approaches to physics based, balancing systems, for 3D biped characters that can react to dynamic environments. The first approach, based on the concept of proprioception, use a neuro-controller to define the position and orientation of the joints involved in the motion. The second approach use a self-adaptive Proportional Derivative (PD) controller along with a neural network. Both neural networks were trained using a Genetic Algorithm (GA). The study showed that both approaches were capable of achieving balance and the GA proved to work well as a search strategy for both the neuro-controller and the PD-controller. The results also showed that the neuro-controller performed better but the PD-controller was more flexible and capable to recover under external disturbances such as wind drag and momentary collisions with objects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parent, R.: Interpolation and basic techniques. In: Computer Animation (2007). https://doi.org/10.1016/b978-155860579-4/50004-5

    Chapter  Google Scholar 

  2. Sims, K.: Evolving virtual creatures (2005). https://doi.org/10.1145/192161.192167

  3. Geijtenbeek, T., van de Panne, M., van der Stappen, A.F.: Flexible muscle-based locomotion for Bipedal creatures. ACM Trans. Graph. https://doi.org/10.1145/2508363.2508399

    Article  Google Scholar 

  4. Galanter, P.: Computational aesthetic evaluation: past and future. In: McCormack, J., d’Inverno, M. (eds.) Computers and Creativity, pp. 255–293. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31727-9

    Chapter  Google Scholar 

  5. Yin, K.K., Loken, K., van de Panne, M.: SIMBICON, simple biped locomotion control. ACM Trans. Graph. 26, 105 (2007)

    Article  Google Scholar 

  6. Yokoi, K., Kanehiro, F., Hirukawa, H., Kaneko, K., Kajita, S.: The 3D linear inverted pendulum mode: a simple modeling for a biped walking pattern generation (2002). https://doi.org/10.1109/iros.2001.973365

  7. Vukobratovic, M., Juricic, D.: Contribution to the synthesis of biped gait. IEEE Trans. Bio-med. Eng. (2008). https://doi.org/10.1109/tbme.1969.4502596

    Article  Google Scholar 

  8. Hirai, K., Hirose, M., Haikawa, Y., Takenaka, T.: The development of Honda humanoid robot. In: Proceedings - IEEE International Conference on Robotics and Automation (1998). https://doi.org/10.1109/ROBOT.1998.677288

  9. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. InTech (1995). https://doi.org/10.1115/1.2899060

    Article  Google Scholar 

  10. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evol. Comput. (2002). https://doi.org/10.1162/106365602320169811

    Article  Google Scholar 

  11. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning (1989). https://doi.org/10.1007/BF01920603

    Article  Google Scholar 

  12. Risi, S., Togelius, J.: Neuroevolution in games: state of the art and open challenges. IEEE Trans. Comput. Intell. AI Games (2015). https://doi.org/10.1109/TCIAIG.2015.2494596

    Article  Google Scholar 

  13. Liapis, A., Yannakakis, G.N., Togelius, J.: Neuroevolutionary constrained optimization for content creation. In: 2011 IEEE Conference on Computational Intelligence and Games, CIG 2011 (2011). https://doi.org/10.1109/CIG.2011

  14. Luo, L., Yin, H., Cai, W., Zhong, J., Lees, M.: Design and evaluation of a data-driven scenario generation framework for game-based training. IEEE Trans. Comput. Intell. AI Games (2017). https://doi.org/10.1109/TCIAIG.2016.2541168

    Article  Google Scholar 

  15. Geijtenbeek, T., Pronost, N.: Interactive character animation using simulated physics. Comput. Graph. Forum (2012). https://doi.org/10.1111/j.1467-8659.2012.03189.x

    Article  Google Scholar 

  16. Qiu, G.Y., Wu, S.H.: Self-adjusting locomotion on a partially broken-down quadrupedal biomorphic robot by evolutionary algorithms. In: 2012 IEEE International Conference on Robotics and Biomimetics, ROBIO 2012 - Conference Digest (2012). https://doi.org/10.1109/ROBIO.2012.6490942

  17. Hodgins, J.K., Wooten, W.L., Brogan, D.C., O’Brien, J.F.: Animating human athletics (2005). https://doi.org/10.1145/218380.218414

  18. Cheng, M.Y., Lin, C.S.: Genetic algorithm for control design of biped locomotion. J. Robot. Syst. (1997). https://doi.org/10.1002/(SICI)1097-4563(199705)14:5<365::AID-ROB3>3.0.CO;2-N

  19. Ayhan, O., Erbatur, K.: Biped robot walk control via gravity compensation techniques. In: IECON Proceedings (Industrial Electronics Conference) (2004). https://doi.org/10.1109/IECON.2004.1433381

  20. Kho, J.W., Lim, D.C., Kuc, T.Y.: Implementation of an intelligent controller for biped walking robot using genetic algorithm. In: 2006 IEEE International Symposium on Industrial Electronics, vol. 1, pp. 49–54 (2006)

    Google Scholar 

  21. Heinen, M.R., Osrio, F.S.: Applying genetic algorithms to control gait of simulated robots. In: Electronics, Robotics and Automotive Mechanics Conference, CERMA 2007 - Proceedings (2007). https://doi.org/10.1109/CERMA.2007.4367736

  22. Shafii, N., Javadi, M.H.S., Kimiaghalam, B.: A truncated fourier series with genetic algorithm for the control of biped locomotion. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM (2009). https://doi.org/10.1109/AIM.2009.5229814

  23. Tsai, Y.Y., Lin, W.C., Cheng, K.B., Lee, J., Lee, T.Y.: Real-time physics-based 3D biped character animation using an inverted pendulum model. IEEE Trans. Vis. Comput. Graph. (2010). https://doi.org/10.1109/TVCG.2009.76

    Article  Google Scholar 

  24. Coros, S., Beaudoin, P., van de Panne, M.: Generalized biped walking control. ACM Trans. Graph. (2010). https://doi.org/10.1145/1778765.1781156

    Article  Google Scholar 

  25. Hong, Y.D., Park, C.S., Kim, J.H.: Stable bipedal walking with a vertical center-of-mass motion by an evolutionary optimized central pattern generator. IEEE Trans. Industr. Electron. (2014). https://doi.org/10.1109/TIE.2013.2267691

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Schinkel Carlsen or George Palamas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carlsen, C.S., Palamas, G. (2019). Evolving Balancing Controllers for Biped Characters in Games. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science(), vol 11507. Springer, Cham. https://doi.org/10.1007/978-3-030-20518-8_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20518-8_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20517-1

  • Online ISBN: 978-3-030-20518-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics