Skip to main content

Towards a Two-Layer Framework for Verifying Autonomous Vehicles

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11460))

Included in the following conference series:

Abstract

Autonomous vehicles rely heavily on intelligent algorithms for path planning and collision avoidance, and their functionality and dependability can be ensured through formal verification. To facilitate the verification, it is beneficial to decouple the static high-level planning from the dynamic functions like collision avoidance. In this paper, we propose a conceptual two-layer framework for verifying autonomous vehicles, which consists of a static layer and a dynamic layer. We focus concretely on modeling and verifying the dynamic layer using hybrid automata and , where a continuous movement of the vehicle as well as collision avoidance via a dipole flow field algorithm are considered. In our framework, decoupling is achieved by separating the verification of the vehicle’s autonomous path planning from that of the vehicle autonomous operation in its continuous dynamic environment. To simplify the modeling process, we propose a pattern-based design method, where patterns are expressed as hybrid automata. We demonstrate the applicability of the dynamic layer of our framework on an industrial prototype of an autonomous wheel loader.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhatia, A., Maly, M.R., Kavraki, L.E., Vardi, M.Y.: Motion planning with complex goals. IEEE Rob. Autom. Mag. 18(3), 55–64 (2011)

    Article  Google Scholar 

  2. Black, P.E.: Manhattan distance. Dictionary Algorithms Data Struct. 18, 2012 (2006)

    Google Scholar 

  3. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying multi-agent programs by model checking. Auton. Agent. Multi-Agent Syst. 12(2), 239–256 (2006)

    Article  Google Scholar 

  4. Branicky, M.S., Borkar, V.S., Mitter, S.K.: A unified framework for hybrid control: model and optimal control theory. IEEE Trans. Autom. Control 43(1), 31–45 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bulychev, P., et al.: Monitor-based statistical model checking for weighted metric temporal logic. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 168–182. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28717-6_15

    Chapter  Google Scholar 

  6. Daniel, K., Nash, A., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. J. Artif. Intell. Res. 39, 533–579 (2010)

    Article  MathSciNet  Google Scholar 

  7. David, A., et al.: Statistical model checking for stochastic hybrid systems. arXiv preprint arXiv:1208.3856 (2012)

  8. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model checking agent programming languages. Autom. Softw. Eng. 19(1), 5–63 (2012)

    Article  Google Scholar 

  9. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime verification for safe robotics. In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 172–189. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_11

    Chapter  Google Scholar 

  10. Desai, A., Saha, I., Yang, J., Qadeer, S., Seshia, S.A.: DRONA: a framework for safe distributed mobile robotics. In: Proceedings of the 8th International Conference on Cyber-Physical Systems, pp. 239–248. ACM (2017)

    Google Scholar 

  11. Doherty, P., Kvarnström, J., Heintz, F.: A temporal logic-based planning and execution monitoring framework for unmanned aircraft systems. Auton. Agent. Multi-Agent Syst. 19(3), 332–377 (2009)

    Article  Google Scholar 

  12. Fainekos, G.E., Kress-Gazit, H., Pappas, G.J.: Temporal logic motion planning for mobile robots. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 2020–2025. IEEE (2005)

    Google Scholar 

  13. Fisher, M., Bordini, R.H., Hirsch, B., Torroni, P.: Computational logics and agents: a road map of current technologies and future trends. Comput. Intell. 23(1), 61–91 (2007)

    Article  MathSciNet  Google Scholar 

  14. Fisher, M., Dennis, L., Webster, M.: Verifying autonomous systems. Commun. ACM 56(9), 84–93 (2013)

    Article  Google Scholar 

  15. Gat, E., Slack, M.G., Miller, D.P., Firby, R.J.: Path planning and execution monitoring for a planetary rover. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 20–25 (1990)

    Google Scholar 

  16. Golan, Y., Edelman, S., Shapiro, A., Rimon, E.: Online robot navigation using continuously updated artificial temperature gradients. IEEE Rob. Autom. Lett. 2(3), 1280–1287 (2017)

    Article  Google Scholar 

  17. Gu, R., Marinescu, R., Seceleanu, C., Lundqvist, K.: Formal verification of an autonomous wheel loader by model checking. In: Proceedings of the 6th Conference on Formal Methods in Software Engineering, pp. 74–83. ACM (2018)

    Google Scholar 

  18. Jafari, A., Nair, J.J.S., Baumgart, S., Sirjani, M.: Safe and efficient fleet operation for autonomous machines: an actor-based approach. In: Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pp. 423–426. ACM (2018)

    Google Scholar 

  19. Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: a component-based framework for generative development of distributed real-time control systems. In: 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications, pp. 199–208. IEEE (2007)

    Google Scholar 

  20. Kloetzer, M., Mahulea, C.: A petri net based approach for multi-robot path planning. Discrete Event Dyn. Syst. 24(4), 417–445 (2014)

    Article  MathSciNet  Google Scholar 

  21. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997)

    Article  Google Scholar 

  22. Lee, E.A., Seshia, S.A.: Introduction to Embedded Systems: A Cyber-Physical Systems Approach. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  23. Lotz, A., Steck, A., Schlegel, C.: Runtime monitoring of robotics software components: increasing robustness of service robotic systems. In: 2011 15th International Conference on Advanced Robotics (ICAR), pp. 285–290. IEEE (2011)

    Google Scholar 

  24. Luo, C., et al.: Runtime verification of robots collision avoidance case study. In: 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC), pp. 204–212. IEEE (2018)

    Google Scholar 

  25. Miloradović, B., Cürüklü, B., Ekström, M., Papadopoulos, A.: Extended colored traveling salesperson for modeling multi-agent mission planning problems. In: Proceedings of the 8th International Conference on Operations Research and Enterprise Systems - Volume 1, ICORES, pp. 237–244, INSTICC. SciTePress (2019). https://doi.org/10.5220/0007309002370244

  26. Quottrup, M.M., Bak, T., Zamanabadi, R.: Multi-robot planning: a timed automata approach. In: 2004 IEEE International Conference on Robotics and Automation, Proceedings, ICRA 2004, vol. 5, pp. 4417–4422. IEEE (2004)

    Google Scholar 

  27. Sirigineedi, G., Tsourdos, A., White, B.A., Zbikowski, R.: Modelling and verification of multiple UAV mission using SMV. arXiv preprint arXiv:1003.0381 (2010)

  28. Smith, S.L., Tumova, J., Belta, C., Rus, D.: Optimal path planning for surveillance with temporal-logic constraints. Int. J. Rob. Res. 30(14), 1695–1708 (2011)

    Article  Google Scholar 

  29. Trinh, L.A., Ekström, M., Cürüklü, B.: Toward shared working space of human and robotic agents through dipole flow field for dependable path planning. Front. Neurorob. 12 (2018)

    Google Scholar 

  30. Valbuena, L., Tanner, H.G.: Hybrid potential field based control of differential drive mobile robots. J. Intell. Rob. Syst. 68(3–4), 307–322 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

The research leading to the presented results has been performed within the research profile DPAC - Dependable Platform for Autonomous Systems and Control project, funded by grant 20150022 of the Swedish Knowledge Foundation that is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gu, R., Marinescu, R., Seceleanu, C., Lundqvist, K. (2019). Towards a Two-Layer Framework for Verifying Autonomous Vehicles. In: Badger, J., Rozier, K. (eds) NASA Formal Methods. NFM 2019. Lecture Notes in Computer Science(), vol 11460. Springer, Cham. https://doi.org/10.1007/978-3-030-20652-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20652-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20651-2

  • Online ISBN: 978-3-030-20652-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics