Skip to main content

Automated Backend Selection for ProB Using Deep Learning

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2019)

Abstract

Employing formal methods for software development usually involves using a multitude of tools such as model checkers and provers. Most of them again feature different backends and configuration options. Selecting an appropriate configuration for a successful employment becomes increasingly hard. In this article, we use machine learning methods to automate the backend selection for the ProB model checker. In particular, we explore different approaches to deep learning and outline how we apply them to find a suitable backend for given input constraints.

Computational support and infrastructure was provided by the “Centre for Information and Media Technology” (ZIM) at the University of Düsseldorf (Germany).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www3.hhu.de/stups/downloads/prob/source/ProB_public_examples.tgz.

  2. 2.

    https://github.com/hhu-stups/prob-examples-metadata.

References

  1. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  2. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer (2012)

    Google Scholar 

  3. Back, R.: On correct refinement of programs. J. Comput. Syst. Sci. 23(1), 49–68 (1981)

    Article  MathSciNet  Google Scholar 

  4. Bobot, F., Filliâtre, J.C., Marché, C., Paskevich, A.: Why3: shepherd your herd of provers. In: Boogie 2011: First International Workshop on Intermediate Verification Languages, Wrocław, pp. 53–64, August 2011. https://hal.inria.fr/hal-00790310

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and regression trees (1984)

    Google Scholar 

  7. Bridge, J.P.: Machine learning and automated theorem proving. Technical report, University of Cambridge, Computer Laboratory (2010)

    Google Scholar 

  8. Cansell, D., Méry, D.: Foundations of the B method. Comput. Inform. 22(3–4), 221–256 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Carlsson, M., Ottosson, G., Carlson, B.: An open-ended finite domain constraint solver. In: Glaser, H., Hartel, P., Kuchen, H. (eds.) PLILP 1997. LNCS, vol. 1292, pp. 191–206. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0033845

    Chapter  Google Scholar 

  10. Carlsson, M., et al.: SICStus Prolog User’s Manual, vol. 3. Swedish Institute of Computer Science Kista, Sweden (1988)

    Google Scholar 

  11. ClearSy: Atelier B, user and reference manuals. Aix-en-Provence, France (2016). http://www.atelierb.eu/

  12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_24

    Chapter  Google Scholar 

  13. Filliâtre, J.-C., Paskevich, A.: Why3—where programs meet provers. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

    Chapter  Google Scholar 

  14. Fraenkel, A.A., Bar-Hillel, Y., Levy, A.: Foundations of Set Theory, vol. 67. Elsevier, Burlington (1973)

    MATH  Google Scholar 

  15. Fraenkel, A.: Zu den Grundlagen der Cantor-Zermeloschen Mengenlehre. Mathematische Annalen 86(3), 230–237 (1922)

    Article  MathSciNet  Google Scholar 

  16. Goller, C.: Learning search-control heuristics for automated deduction systems with folding architecture networks. In: ESANN, pp. 45–50 (1999)

    Google Scholar 

  17. Goller, C., Kuchler, A.: Learning task-dependent distributed representations by backpropagation through structure. In: Proceedings of International Conference on Neural Networks (ICNN 1996), vol. 1, pp. 347–352. IEEE (1996)

    Google Scholar 

  18. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  19. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and F-score, with implication for evaluation. In: Losada, D.E., Fernández-Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 345–359. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31865-1_25

    Chapter  Google Scholar 

  20. Healy, A.: Predicting SMT solver performance for software verification. Master’s thesis, National University of Ireland Maynooth (2016)

    Google Scholar 

  21. Healy, A., Monahan, R., Power, J.F.: Evaluating the use of a general-purpose benchmark suite for domain-specific SMT-solving. In: Proceedings of the 31st Annual ACM Symposium on Applied Computing, SAC 2016, pp. 1558–1561. ACM, New York (2016)

    Google Scholar 

  22. Japkowicz, N.: The class imbalance problem: Significance and strategies. In: Proceedings of the International Conference on Artificial Intelligence (2000)

    Google Scholar 

  23. Krings, S., Bendisposto, J., Leuschel, M.: From failure to proof: the ProB disprover for B and Event-B. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS, vol. 9276, pp. 199–214. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22969-0_15

    Chapter  Google Scholar 

  24. Krings, S., Leuschel, M.: SMT solvers for validation of B and Event-B models. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 361–375. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_23

    Chapter  Google Scholar 

  25. Krings, S., Schmidt, J., Brings, C., Frappier, M., Leuschel, M.: A translation from alloy to B. In: Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.) ABZ 2018. LNCS, vol. 10817, pp. 71–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4_6

    Chapter  Google Scholar 

  26. Kubat, M., Matwin, S., et al.: Addressing the curse of imbalanced training sets: one-sided selection. In: ICML, Nashville, USA, vol. 97, pp. 179–186 (1997)

    Google Scholar 

  27. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 253–256. IEEE (2010)

    Google Scholar 

  28. Letz, R., Schumann, J., Bayerl, S., Bibel, W.: Setheo: a high-performance theorem prover. J. Autom. Reasoning 8(2), 183–212 (1992)

    Article  MathSciNet  Google Scholar 

  29. Leuschel, M., Bendisposto, J., Dobrikov, I., Krings, S., Plagge, D.: From animation to data validation: the ProB constraint solver 10 years on. In: Boulanger, J.L. (ed.) Formal Methods Applied to Complex Systems: Implementation of the B Method, pp. 427–446. Wiley ISTE, Hoboken (2014). Chapter 14

    Google Scholar 

  30. Leuschel, M., Butler, M.: ProB: an automated analysis toolset for the B method. Int. J. Softw. Tools Technol. Transfer 10(2), 185–203 (2008)

    Article  Google Scholar 

  31. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45236-2_46

    Chapter  Google Scholar 

  32. Lewis, D.D., Catlett, J.: Heterogeneous uncertainty sampling for supervised learning. In: Proceedings of the Eleventh International Conference on Machine Learning, pp. 148–156 (1994)

    Chapter  Google Scholar 

  33. Loreggia, A., Malitsky, Y., Samulowitz, H., Saraswat, V.A.: Deep Learning for Algorithm Portfolios. In: AAAI, pp. 1280–1286 (2016)

    Google Scholar 

  34. Plagge, D., Leuschel, M.: Validating B,Z and TLA\(^{+}\) Using ProB and Kodkod. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 372–386. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_31

    Chapter  Google Scholar 

  35. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  36. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  37. Rosenblatt, F.: Principles of neurodynamics. perceptrons and the theory of brain mechanisms. Technical report, Cornell Aeronautical Lab, Inc., Buffalo, NY (1961)

    Google Scholar 

  38. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-propagating errors. Nature 323(6088), 533–538 (1986)

    Article  Google Scholar 

  39. Schulz, S.: E-A Brainiac theorem prover. AI Commun. 15(2, 3), 111–126 (2002)

    MATH  Google Scholar 

  40. Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 1015–1021. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439_114

    Chapter  Google Scholar 

  41. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_49

    Chapter  Google Scholar 

  42. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  43. Wolpert, D.H., Macready, W.G., et al.: No free lunch theorems for search. Technical Report SFI-TR-95-02-010, Santa Fe Institute (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jannik Dunkelau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dunkelau, J., Krings, S., Schmidt, J. (2019). Automated Backend Selection for ProB Using Deep Learning. In: Badger, J., Rozier, K. (eds) NASA Formal Methods. NFM 2019. Lecture Notes in Computer Science(), vol 11460. Springer, Cham. https://doi.org/10.1007/978-3-030-20652-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20652-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20651-2

  • Online ISBN: 978-3-030-20652-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics