Abstract
In this article, a proof of concept of a dynamic clustering algorithm based on density, called D3CAS, is presented. This algorithm was implemented to be run under the Spark Streaming framework, and it allows processing data streams. The algorithm was tested using a stream of short texts consisting of requirements generated by social media users, in particular, from a dataset called Pizza Request Dataset. The results, obtained in a virtualized environment, were analyzed with different configurations for algorithm parameters, which allowed establishing which are the configurations that yield the best results. Since the dataset used includes the label for each text in the stream, cluster purity could be measured and the results obtained could be compared to those presented by the authors of the dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, S., Schlobach, S., Klein, M.: What is concept drift and how to measure it? In: Cimiano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS (LNAI), vol. 6317, pp. 241–256. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16438-5_17
Aggarwal, C.C.: Data streams: an overview and scientific applications. In: Gaber, M. (ed.) Scientific Data Mining and Knowledge Discovery. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-02788-8_14
Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS 2002), New York, NY, USA, pp. 1–16. ACM (2002). https://doi.org/10.1145/543613.543615
Molina, R., Hasperué, W.: D3CAS: un Algoritmo de Clustering para el Procesamiento de Flujos de Datos en Spark. In: Proceedings of the XXIV Congreso Argentino de Ciencias de la Computación, pp. 452–461 (2018). ISBN 978-950-658-472-6
Miner, G., Elder, J., Hill, T., Nisbet, R., Delen, D., Fast, A.: Practical Text Mining and Statistical Analysis for Non-structured Text Data Applications. Academic Press, Cambridge (2012)
Halibas, A.S., Shaffi, A.S., Mohamed, M.A.K.V.: Application of text classification and clustering of Twitter data for business analytics. In: Majan International Conference (MIC), Muscat, pp. 1–7 (2018)
Li, P., et al.: Learning from short text streams with topic drifts. IEEE Trans. Cybern. 48(9), 2697–2711 (2018). https://doi.org/10.1109/TCYB.2017.2748598
Jain, A., Sharma, I.: Clustering of text streams via facility location and spherical K-means. In: Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, pp. 1209–1213 (2018)
Duan, R., Li, C.: An adaptive Dirichlet multinomial mixture model for short text streaming clustering. In: IEEE/WIC/ACM International Conference on Web Intelligence (WI), Santiago, pp. 49–55 (2018)
Gama, J., Rodrigues, P.P.: An overview on mining data streams. In: Abraham, A., Hassanien, A.E., de Carvalho, A.P.L.F., Snášel, V. (eds.) Foundations of Computational, Intelligence Volume 6. Studies in Computational Intelligence, vol. 206. Springer, Berlin (2009). https://doi.org/10.1007/978-3-642-01091-0_2
Gepperth, A., Hammer, B.: Incremental learning algorithms and applications. In: European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium (2016)
Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: Proceedings of the 29th International Conference on Very Large Data Bases-Volume 29, pp 81–92. VLDB Endowment (2003)
Zhang, P., Zhu, X., Shi, Y., Wu, X.: An aggregate ensemble for mining concept drifting data streams with noise. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS (LNAI), vol. 5476, pp. 1021–1029. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01307-2_109
Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Proceedings of the SIAM International Conference on Data Mining, pp. 328–339 (2006)
Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)
Ackermann, M.R., Märtens, M., Raupach, C., Swierkot, K., Lammersen, C., Sohler, C.: StreamKM++: a clustering algorithm for data streams. ACM J. Exp. Algorithmics 17(1), 173–187 (2012)
Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027–1035 (2007)
Zhang, X., Furtlehner, C., Sebag, M.: Data streaming with affinity propagation. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS (LNAI), vol. 5212, pp. 628–643. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87481-2_41
Althoff, T., Danescu-Niculescu-Mizil, C., Jurafsky, D.: How to ask for a favor: a case study on the success of altruistic requests. In: Proceedings of ICWSM (2014)
Reed, J.W., Jiao, Y., Potok, T.E., Klump, B.A., Elmore, M.T., Hurson, A.R.: TF-ICF: a new term weighting scheme for clustering dynamic data streams, pattern recognition. In: Proceedings of the 5th International Conference on Machine Learning and Applications (ICMLA 2006) (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Molina, R., Hasperué, W., Villa Monte, A. (2019). D3CAS: Distributed Clustering Algorithm Applied to Short-Text Stream Processing. In: Pesado, P., Aciti, C. (eds) Computer Science – CACIC 2018. CACIC 2018. Communications in Computer and Information Science, vol 995. Springer, Cham. https://doi.org/10.1007/978-3-030-20787-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-20787-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20786-1
Online ISBN: 978-3-030-20787-8
eBook Packages: Computer ScienceComputer Science (R0)