Skip to main content

Incremental Bit-Quads Count in Tree of Shapes

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

Bit-quads are \(2\times 2\) binary patterns which are counted within a binary image and can be used to compute attributes. Based on previous works which proposed an efficient algorithm to count bit-quads in component trees, in this paper, we discuss how we can count these patterns in tree of shapes by presenting two approaches. In the first one, we show how counting quads in component trees can be used to count them in tree of shapes by using the depth of the node as the value of pixels in a larger and interpolated image representation (used in an algorithm for constructing tree of shapes). In the second approach, we propose a novel algorithm which uses this larger image representation, but, the resulting quad counts are for the input image. In this way, our approach gives exactly the counts for the original image. We also provide experimental results showing that our algorithm is much faster than the non-incremental naive approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gray, S.B.: Local properties of binary images in two dimensions. IEEE Trans. Comput. C–20(5), 551–561 (1971)

    Article  Google Scholar 

  2. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

    Article  Google Scholar 

  3. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000)

    Article  Google Scholar 

  4. Salembier, P., Wilkinson, M.H.F.: Connected operators. IEEE Signal Process. Mag. 26(6), 136–157 (2009)

    Article  Google Scholar 

  5. Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: applications using tree-based image representations. In: International Conference on Pattern Recognition (ICPR), pp. 485–488 (2012)

    Google Scholar 

  6. Alves, W.A.L., Hashimoto, R.F.: Ultimate grain filter. In: IEEE International Conference on Image Processing (ICIP), pp. 2953–2957 (2014)

    Google Scholar 

  7. Climent, J., Oliveira, L.S.: A new algorithm for number of holes attribute filtering of grey-level images. Pattern Recogn. Lett. 53, 24–30 (2015)

    Article  Google Scholar 

  8. Silva, D.J., Alves, W.A.L., Morimitsu, A., Hashimoto, R.F.: Efficient incremental computation of attributes based on locally countable patterns in component trees. In: IEEE International Conference on Image Processing (ICIP), pp. 3738–3742 (2016)

    Google Scholar 

  9. Najman, L., Géraud, T.: Discrete set-valued continuity and interpolation. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 37–48. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_4

    Chapter  MATH  Google Scholar 

  10. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of nD images. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 98–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_9

    Chapter  MATH  Google Scholar 

  11. Carlinet, E., Crozet, S., Géraud, T.: The tree of shapes turned into a max-tree: a simple and efficient linear algorithm. In: IEEE International Conference on Image Processing (ICIP), pp. 1488–1492 (2018)

    Google Scholar 

  12. Alves, W.A.L., Morimitsu, A., Hashimoto, R.F.: Scale-space representation based on levelings through hierarchies of level sets. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 265–276. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18720-4_23

    Chapter  Google Scholar 

  13. Caselles, V., Meinhardt, E., Monasse, P.: Constructing the tree of shapes of an image by fusion of the trees of connected components of upper and lower level sets. Positivity 12(1), 55–73 (2008)

    Article  MathSciNet  Google Scholar 

  14. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04611-7

    Book  MATH  Google Scholar 

  15. Berger, C., Geraud, T., Levillain, R., Widynski, N., Baillard, A., Bertin, E.: Effective component tree computation with application to pattern recognition in astronomical imaging. In: IEEE International Conference on Image Processing, vol. 4, pp. IV-41–IV-44 (2007)

    Google Scholar 

  16. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)

    Article  MathSciNet  Google Scholar 

  17. León, M., Mallo, S., Gasull, A.: A tree structured-based caption text detection approach. In: Fifth IASTED VIIP, pp. 220–225 (2005)

    Google Scholar 

  18. Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Efficient computation of attributes and saliency maps on tree-based image representations. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 693–704. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18720-4_58

    Chapter  MATH  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico (Proc. 141422/2018-1 and 428720/2018-8); CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Finance Code 001); FAPESP - Fundação de Amparo a Pesquisa do Estado de São Paulo (Proc. 2015/01587-0 and 2018/15652-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dennis José da Silva or Ronaldo Fumio Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Silva, D.J., Alves, W.A.L., Morimitsu, A., Gobber, C.F., Hashimoto, R.F. (2019). Incremental Bit-Quads Count in Tree of Shapes. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics