Skip to main content

Part-Based Approximations for Morphological Operators Using Asymmetric Auto-encoders

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

This paper addresses the issue of building a part-based representation of a dataset of images. More precisely, we look for a non-negative, sparse decomposition of the images on a reduced set of atoms, in order to unveil a morphological and interpretable structure of the data. Additionally, we want this decomposition to be computed online for any new sample that is not part of the initial dataset. Therefore, our solution relies on a sparse, non-negative auto-encoder where the encoder is deep (for accuracy) and the decoder shallow (for interpretability). This method compares favorably to the state-of-the-art online methods on two datasets (MNIST and Fashion MNIST), according to classical metrics and to a new one we introduce, based on the invariance of the representation to morphological dilation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For code release, visit https://gitlab.telecom-paristech.fr/images-public/asymae_morpho.

References

  1. Angulo, J., Velasco-Forero, S.: Sparse mathematical morphology using non-negative matrix factorization. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 1–12. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21569-8_1

    Chapter  MATH  Google Scholar 

  2. Ayinde, B.O., Zurada, J.M.: Deep learning of constrained autoencoders for enhanced understanding of data. CoRR abs/1802.00003 (2018)

    Google Scholar 

  3. Charisopoulos, V., Maragos, P.: Morphological perceptrons: geometry and training algorithms. In: International Symposium on Mathematical Morphology and Its Applications to Signal and Image Processing, pp. 3–15, April 2017. https://doi.org/10.1007/978-3-319-57240-6_1

    Google Scholar 

  4. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. CoRR abs/1606.03657 (2016)

    Google Scholar 

  5. Dosovitskiy, A., Springenberg, J.T., Brox, T.: Learning to generate chairs with convolutional neural networks. CoRR abs/1411.5928 (2014)

    Google Scholar 

  6. Hosseini-Asl, E., Zurada, J.M., Nasraoui, O.: Deep learning of part-based representation of data using sparse autoencoders with nonnegativity constraints. IEEE Trans. Neural Networks Learn. Syst. 27(12), 2486–2498 (2016)

    Article  Google Scholar 

  7. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. CoRR cs.LG/0408058 (2004)

    Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167 (2015)

    Google Scholar 

  9. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  10. Lee, H., Ekanadham, C., Ng, A.Y.: Sparse deep belief net model for visual area V2. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems 20, pp. 873–880 (2008)

    Google Scholar 

  11. Lemme, A., Reinhart, R.F., Steil, J.J.: Online learning and generalization of parts-based image representations by non-negative sparse autoencoders. Neural Networks 33, 194–203 (2012)

    Article  Google Scholar 

  12. Maas, A.L.: Rectifier nonlinearities improve neural network acoustic models. In: International Conference on Machine Learning (2013)

    Google Scholar 

  13. Mairal, J., Bach, F.R., Ponce, J.: Sparse modeling for image and vision processing. CoRR abs/1411.3230 (2014)

    Google Scholar 

  14. Maragos, P., Schafer, R.: Morphological skeleton representation and coding of binary images. IEEE Trans. Acoust. Speech Sig. Process. 34(5), 1228–1244 (1986)

    Article  Google Scholar 

  15. Pesaresi, M., Benediktsson, J.A.: A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans. Geosci. Remote Sens. 39(2), 309–320 (2001)

    Article  Google Scholar 

  16. Ritter, G., Sussner, P.: An introduction to morphological neural networks. In: 13th International Conference on Pattern Recognition, vol. 4, pp. 709–717, September 1996. https://doi.org/10.1109/ICPR.1996.547657

  17. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer Science & Business Media, Heidelberg (2013)

    MATH  Google Scholar 

  18. Tanaka, K.: Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb. Cortex 13(1), 90–9 (2003)

    Article  Google Scholar 

  19. Theis, F.J., Stadlthanner, K., Tanaka, T.: First results on uniqueness of sparse non-negative matrix factorization. In: 13th IEEE European Signal Processing Conference, pp. 1–4 (2005)

    Google Scholar 

  20. Velasco-Forero, S., Angulo, J.: Non-Negative Sparse Mathematical Morphology, chap. 1. In: Advances in Imaging and Electron Physics, vol. 202. Elsevier Inc., Academic Press (2017)

    Google Scholar 

  21. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747 (2017)

  22. Zhang, L., Lu, Y.: Comparison of auto-encoders with different sparsity regularizers. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–5 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was partially funded by a grant from Institut Mines-Telecom and MINES ParisTech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bastien Ponchon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ponchon, B., Velasco-Forero, S., Blusseau, S., Angulo, J., Bloch, I. (2019). Part-Based Approximations for Morphological Operators Using Asymmetric Auto-encoders. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics