Skip to main content

Contact Based Hierarchical Segmentation for Granular Materials

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

Segmentation of tomography images of granular materials has mostly been done without any semantic notion of the materials these images represent. Poor segmentation; undersegmentation or oversegmentation can be mitigated through the introduction of a prior that defines what a valid boundary between two labels should be.

In this paper, we present an approach to multiscale tomography segmentation of granular materials, based on hierarchical segmentation using minima. A 3D tomography image of granular materials is segmented with the introduction of a contact prior combined with other extinction for the purpose of formulating the hierarchy. The contact prior based hierarchy is biased towards a segmentation with a realistic mechanically valid contact network. The proposed method is observed to significantly increase the segmentation accuracy of these grains.

Grenoble INP—Institute of Engineering Univ. Grenoble Alpes.

WRHI—World Research Hub Initiative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ando, E.: Experimental investigation of microstructural changes in deforming granular media using x-ray tomography. Ph.D. thesis, Université de Grenoble (2013)

    Google Scholar 

  2. Arbelaez, P.: Boundary extraction in natural images using ultrametric contour maps. In: Conference on Computer Vision and Pattern Recognition Workshop 2006, CVPRW 2006, pp. 182–182. IEEE (2006)

    Google Scholar 

  3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: From contours to regions: an empirical evaluation (2009)

    Google Scholar 

  4. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Transact. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  5. Arbeláez, P., Pont-Tuset, J., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 328–335 (2014)

    Google Scholar 

  6. Azéma, E., Radjai, F.: Force chains and contact network topology in sheared packings of elongated particles. Phys. Rev. E 85(3), 031303 (2012)

    Article  Google Scholar 

  7. Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Transact. Pattern Anal. Mach. Intell. 31(8), 1362–1374 (2009)

    Article  Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition 2009, CVPR 2009, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Guigues, L., Cocquerez, J.P., Le Men, H.: Scale-sets image analysis. Int. J. Comput. Vis. 68(3), 289–317 (2006)

    Article  Google Scholar 

  10. Guimarães, S.J.F., Cousty, J., Kenmochi, Y., Najman, L.: A hierarchical image segmentation algorithm based on an observation scale. In: Gimel’farb, G., et al. (eds.) Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp. 116–125. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34166-3_13

    Chapter  Google Scholar 

  11. Hall, S., et al.: Discrete and continuum experimental study of localised deformation in hostun sand under triaxial compression using x-ray \(\mu \)ct and 3D digital image correlation. Géotechnique 60(5), 315–322 (2010)

    Article  Google Scholar 

  12. Maia, D.S., de Albuquerque Araujo, A., Cousty, J., Najman, L., Perret, B., Talbot, H.: Evaluation of combinations of watershed hierarchies. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 133–145. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_11

    Chapter  Google Scholar 

  13. Martin, D.R., Malik, J., Patterson, D.: An Empirical Approach to Grouping and Segmentation. Computer Science Division, University of California, Berkeley (2003)

    Google Scholar 

  14. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Transact. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  15. Perret, B., Cousty, J., Guimarães, S.J.F., Maia, D.S.: Evaluation of hierarchical watersheds. IEEE Transact. Image Process. 27(4), 1676–1688 (2018). https://doi.org/10.1109/TIP.2017.2779604

    Article  MathSciNet  MATH  Google Scholar 

  16. Ren, Z., Shakhnarovich, G.: Image segmentation by cascaded region agglomeration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2011–2018 (2013)

    Google Scholar 

  17. Soille, P.: Constrained connectivity for hierarchical image partitioning and simplification. IEEE Transact. Pattern Anal. Mach. Intell. 30(7), 1132–1145 (2008)

    Article  Google Scholar 

  18. Tengattini, A., Andò, E.: Kalisphera: an analytical tool to reproduce the partial volume effect of spheres imaged in 3D. Measur. Sci. Technol. 26(9), 095606 (2015)

    Article  Google Scholar 

  19. Wiebicke, M., Andò, E., Herle, I., Viggiani, G.: On the metrology of interparticle contacts in sand from X-ray tomography images. Measur. Sci. Technol. 28(12), 124007 (2017)

    Article  Google Scholar 

  20. Witkin, A.P.: Scale-space filtering. In: Readings in Computer Vision, pp. 329–332. Elsevier (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olumide Okubadejo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Okubadejo, O., Andò, E., Bonnaud, L., Viggiani, G., Dalla Mura, M. (2019). Contact Based Hierarchical Segmentation for Granular Materials. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics