Skip to main content

Multilabel, Multiscale Topological Transformation for Cerebral MRI Segmentation Post-processing

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

Accurate segmentation of cerebral structures remains, after two decades of research, a complex task. In particular, obtaining satisfactory results in terms of topology, in addition to quantitative and geometrically correct properties is still an ongoing issue. In this paper, we investigate how recent advances in multilabel topology and homotopy-type preserving transformations can be involved in the development of multiscale topological modelling of brain structures, and topology-based post-processing of segmentation maps of brain MR images. In this context, a preliminary study and a proof-of-concept are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Y., Han, X., Prince, J.L.: Digital topology on adaptive octree grids. J. Math. Imaging Vis. 34(2), 165–184 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bazin, P.-L., Ellingsen, L.M., Pham, D.L.: Digital homeomorphisms in deformable registration. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 211–222. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73273-0_18

    Chapter  Google Scholar 

  3. Bazin, P.L., Pham, D.L.: Topology correction of segmented medical images using a fast marching algorithm. Comput. Methods Programs Biomed. 88(2), 182–190 (2007)

    Article  Google Scholar 

  4. Bazin, P.L., Pham, D.L.: Topology-preserving tissue classification of magnetic resonance brain images. IEEE Trans. Med. Imaging 26(4), 487–496 (2007)

    Article  Google Scholar 

  5. Caldairou, B., et al.: Segmentation of the cortex in fetal MRI using a topological model. In: International Symposium on Biomedical Imaging (ISBI), Proceedings, pp. 2045–2048 (2011)

    Google Scholar 

  6. Caldairou, B., Passat, N., Habas, P.A., Studholme, C., Rousseau, F.: A non-local fuzzy segmentation method: application to brain MRI. Pattern Recognit. 44(9), 1916–1927 (2011)

    Article  Google Scholar 

  7. Cointepas, Y., Bloch, I., Garnero, L.: A cellular model for multi-objects multi-dimensional homotopic deformations. Pattern Recognit. 34(9), 1785–1798 (2001)

    Article  Google Scholar 

  8. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D, and 4D discrete spaces. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 637–648 (2009)

    Article  Google Scholar 

  9. Damiand, G., Dupas, A., Lachaud, J.O.: Fully deformable 3D digital partition model with topological control. Pattern Recognit. Lett. 32(9), 1374–1383 (2011)

    Article  Google Scholar 

  10. Faisan, S., Passat, N., Noblet, V., Chabrier, R., Meyer, C.: Topology preserving warping of 3-D binary images according to continuous one-to-one mappings. IEEE Trans. Image Process. 20(8), 2135–2145 (2011)

    Article  MathSciNet  Google Scholar 

  11. Han, X., Xu, C., Prince, J.L.: A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 755–768 (2003)

    Article  Google Scholar 

  12. Kong, T.Y.: A digital fundamental group. Comput. Graph. 13(2), 159–166 (1989)

    Article  Google Scholar 

  13. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vis. Graph. Image Process. 48(3), 357–393 (1989)

    Article  Google Scholar 

  14. Kriegeskorte, N., Goebel, N.: An efficient algorithm for topologically correct segmentation of the cortical sheet in anatomical MR volumes. NeuroImage 14(2), 329–346 (2001)

    Article  Google Scholar 

  15. Mangin, J.F., Frouin, V., Bloch, I., Régis, J., López-Krahe, J.: From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. J. Math. Imaging Vis. 5(4), 297–318 (1995)

    Article  Google Scholar 

  16. Mazo, L.: A framework for label images. In: Ferri, M., Frosini, P., Landi, C., Cerri, A., Di Fabio, B. (eds.) CTIC 2012. LNCS, vol. 7309, pp. 1–10. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30238-1_1

    Chapter  Google Scholar 

  17. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: a unified topological framework. J. Math. Imaging Vis. 44(1), 19–37 (2012)

    Article  MathSciNet  Google Scholar 

  18. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Topology on digital label images. J. Math. Imaging Vis. 44(3), 254–281 (2012)

    Article  MathSciNet  Google Scholar 

  19. Pham, D.L., Bazin, P.L., Prince, J.L.: Digital topology in brain imaging. IEEE Signal Process. Mag. 27(4), 51–59 (2010)

    Article  Google Scholar 

  20. Poupon, F., Mangin, J.-F., Hasboun, D., Poupon, C., Magnin, I., Frouin, V.: Multi-object deformable templates dedicated to the segmentation of brain deep structures. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 1134–1143. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056303

    Chapter  Google Scholar 

  21. Saha, P.K., Strand, R., Borgefors, G.: Digital topology and geometry in medical imaging: a survey. IEEE Trans. Med. Imaging 34(9), 1940–1964 (2015)

    Article  Google Scholar 

  22. Ségonne, F.: Active contours under topology control - genus preserving level sets. Int. J. Comput. Vis. 79(2), 107–117 (2008)

    Article  Google Scholar 

  23. Siqueira, M., Latecki, L.J., Tustison, N.J., Gallier, J.H., Gee, J.C.: Topological repairing of 3D digital images. J. Math. Imaging Vis. 30(3), 249–274 (2008)

    Article  MathSciNet  Google Scholar 

  24. Tor-Díez, C., Passat, N., Bloch, I., Faisan, S., Bednarek, N., Rousseau, F.: An iterative multi-atlas patch-based approach for cortex segmentation from neonatal MRI. Comput. Med. Imaging Graph. 70, 73–82 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has been supported by the ANR MAIA project (http://recherche.imt-atlantique.fr/maia), grant ANR-15-CE23-0009 of the French National Research Agency; INSERM and Institut Mines Télécom Atlantique (ChaireImagerie médicale en thérapie interventionnelle”); the Fondation pour la Recherche Médicale (grant DIC20161236453); and the American Memorial Hospital Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Tor-Díez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tor-Díez, C. et al. (2019). Multilabel, Multiscale Topological Transformation for Cerebral MRI Segmentation Post-processing. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics