Skip to main content

Hierarchical Approach for Neonate Cerebellum Segmentation from MRI: An Experimental Study

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

Morphometric analysis of brain structures is of high interest for premature neonates, in particular for defining predictive neurodevelopment biomarkers. This requires beforehand, the correct segmentation of structures of interest from MR images. Such segmentation is however complex, due to the resolution and properties of data. In this context, we investigate the potential of hierarchical image models, and more precisely the binary partition tree, as a way of developing efficient, interactive and user-friendly 3D segmentation methods. In particular, we experiment the relevance of texture features for defining the hierarchy of partitions constituting the final segmentation space. This is one of the first uses of binary partition trees for 3D segmentation of medical images. Experiments are carried out on 19 MR images for cerebellum segmentation purpose.

The research leading to these results has been supported by the ANR MAIA project (http://recherche.imt-atlantique.fr/maia), grant ANR-15-CE23-0009 of the French National Research Agency; and the American Memorial Hospital Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    © Imperial College of Science, Technology and Medicine and I. S. Gousias 2013.

  2. 2.

    Epirmex is a part of the French epidemiologic study Epipage 2 [1], http://epipage2.inserm.fr.

References

  1. Ancel, P.Y., Goffinet, F.: EPIPAGE 2 writing group: EPIPAGE 2: a preterm birth cohort in France in 2011. BMC Pediatr. 14, 97 (2014)

    Article  Google Scholar 

  2. Bogovic, J.A., Bazin, P.L., Ying, S.H., Prince, J.L.: Automated segmentation of the cerebellar lobules using boundary specific classification and evolution. In: IPMI, Proceedings, pp. 62–73 (2013)

    Google Scholar 

  3. Cardoso, M.J., et al.: AdaPT: an adaptive preterm segmentation algorithm for neonatal brain MRI. NeuroImage 65, 97–108 (2013)

    Article  Google Scholar 

  4. Cettour-Janet, P., et al.: Watervoxels. HAL Research Report hal-02004228 (2019)

    Google Scholar 

  5. Coupé, P., Manjón, J.V., Fonov, V., Pruessner, J., Robles, M., Collins, D.L.: Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage 54, 940–954 (2011)

    Article  Google Scholar 

  6. Gousias, I.S., et al.: Magnetic resonance imaging of the newborn brain: manual segmentation of labelled atlases in term-born and preterm infants. NeuroImage 62, 1499–1509 (2012)

    Article  Google Scholar 

  7. Gousias, I.S., et al.: Magnetic resonance imaging of the newborn brain: automatic segmentation of brain images into 50 anatomical regions. PLoS One 8, e5999 (2013)

    Article  Google Scholar 

  8. Gui, L., Lisowski, R., Faundez, T., Hüppi, P., Lazeyras, F., Kocher, M.: Morphology-based segmentation of newborn brain MR images. In: MICCAI NeoBrainS12, Proceedings, pp. 1–8 (2012)

    Google Scholar 

  9. Hack, M., Fanaroff, A.A.: Outcomes of children of extremely low birthweight and gestational age in the 1990s. Semin. Neonatol. 5, 89–106 (2000)

    Article  Google Scholar 

  10. Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. SMC–3, 610–621 (1973)

    Article  Google Scholar 

  11. Hwang, J., Kim, J., Han, Y., Park, H.: An automatic cerebellum extraction method in T1-weighted brain MR images using an active contour model with a shape prior. Magn. Reson. Imaging 29, 1014–1022 (2011)

    Article  Google Scholar 

  12. Kim, H., Lepage, C., Evans, A.C., Barkovich, J., Xu, D.: NEOCIVET: extraction of cortical surface and analysis of neonatal gyrification using a modified CIVET pipeline. In: MICCAI, Proceedings, pp. 571–579 (2015)

    Google Scholar 

  13. van der Lijn, F., et al.: Cerebellum segmentation in MRI using atlas registration and local multi-scale image descriptors. In: ISBI, Proceedings, pp. 221–224 (2009)

    Google Scholar 

  14. Machairas, V., Faessel, M., Cárdenas-Peña, D., Chabardes, T., Walter, T., Decencière, E.: Waterpixels. IEEE Trans. Image Process. 24(11), 3707–3716 (2015)

    Article  MathSciNet  Google Scholar 

  15. Mahapatra, D.: Skull stripping of neonatal brain MRI: using prior shape information with graph cuts. J. Digit. Imaging 25, 802–814 (2012)

    Article  Google Scholar 

  16. Makris, N., et al.: MRI-based surface-assisted parcellation of human cerebellar cortex: an anatomically specified method with estimate of reliability. NeuroImage 25, 1146–1160 (2005)

    Article  Google Scholar 

  17. Makropoulos, A., Counsell, S.J., Rueckert, D.: A review on automatic fetal and neonatal brain MRI segmentation. NeuroImage 170, 231–248 (2017)

    Article  Google Scholar 

  18. Makropoulos, A., et al.: Automatic tissue and structural segmentation of neonatal brain MRI using expectation-maximization. In: MICCAI NeoBrainS12, Proceedings, pp. 9–15 (2012)

    Google Scholar 

  19. Marlow, N., Wolke, D., Bracewell, M.A., Samara, M., Group, E.S.: Neurologic and developmental disability at six years of age after extremely preterm birth. N. Engl. J. Med. 352, 9–19 (2005)

    Article  Google Scholar 

  20. Melbourne, A., Cardoso, M.J., Kendall, G.S., Robertson, N.J., Marlow, N., Ourselin, S.: NeoBrainS12 challenge: adaptive neonatal MRI brain segmentation with myelinated white matter class and automated extraction of ventricles I–IV. In: MICCAI NeoBrainS12, Proceedings, pp. 16–21 (2012)

    Google Scholar 

  21. Péporté, M., Ghita, D.E.I., Twomey, E., Whelan, P.F.: A hybrid approach to brain extraction from premature infant MRI. In: SCIA, Proceedings, pp. 719–730 (2011)

    Chapter  Google Scholar 

  22. Prastawa, M., Gilmore, J.H., Lin, W., Gerig, G.: Automatic segmentation of MR images of the developing newborn brain. Med. Image Anal. 9, 457–466 (2005)

    Article  Google Scholar 

  23. Randrianasoa, J.F., Kurtz, C., Desjardin, E., Passat, N.: Binary partition tree construction from multiple features for image segmentation. Pattern Recognit. 84, 237–250 (2018)

    Article  Google Scholar 

  24. Randrianasoa, J.F., Kurtz, C., Gançarski, P., Desjardin, E., Passat, N.: Evaluating the quality of binary partition trees based on uncertain semantic ground-truth for image segmentation. In: ICIP, Proceedings, pp. 3874–3878 (2017)

    Google Scholar 

  25. Randrianasoa, J.F., Kurtz, C., Gançarski, P., Desjardin, E., Passat, N.: Intrinsic quality analysis of binary partition trees. In: ICPRAI, Proceedings, pp. 114–119 (2018)

    Google Scholar 

  26. Romero, J.E.: CERES: a new cerebellum lobule segmentation method. NeuroImage 147, 916–924 (2017)

    Article  Google Scholar 

  27. Rousseau, F., et al.: BTK: an open-source toolkit for fetal brain MR image processing. Comput. Methods Programs Biomed. 109, 65–73 (2013)

    Article  Google Scholar 

  28. Saeed, N., Puri, B.: Cerebellum segmentation employing texture properties and knowledge based image processing: applied to normal adult controls and patients. Magn. Reson. Imaging 20, 425–429 (2002)

    Article  Google Scholar 

  29. Salembier, P., Garrido, L.: Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Trans. Image Process. 9, 561–576 (2000)

    Article  Google Scholar 

  30. Salembier, P., Wilkinson, M.H.F.: Connected operators: a review of region-based morphological image processing techniques. IEEE Signal Process. Mag. 26, 136–157 (2009)

    Article  Google Scholar 

  31. Serag, A., et al.: Accurate learning with few atlases (ALFA): an algorithm for MRI neonatal brain extraction and comparison with 11 publicly available methods. Sci. Rep. 6, 23470 (2016)

    Article  Google Scholar 

  32. Stoodley, C.J., Limperopoulos, C.: Structure-function relationships in the developing cerebellum: evidence from early-life cerebellar injury and neurodevelopmental disorders. Semin. Fetal Neonatal Med. 21, 356–364 (2016)

    Article  Google Scholar 

  33. Tustison, N.J., et al.: N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010)

    Article  Google Scholar 

  34. Wang, L., Shi, F., Lin, W., Gilmore, J.H., Shen, D.: Automatic segmentation of neonatal images using convex optimization and coupled level sets. NeuroImage 58, 805–817 (2011)

    Article  Google Scholar 

  35. Wang, L., Shi, F., Yap, P.T., Gilmore, J.H., Lin, W., Shen, D.: 4D multi-modality tissue segmentation of serial infant images. PLoS One 7, e44596 (2012)

    Article  Google Scholar 

  36. Xue, H., et al.: Automatic segmentation and reconstruction of the cortex from neonatal MRI. NeuroImage 38, 461–477 (2007)

    Article  Google Scholar 

  37. Yang, Z., et al.: Automated cerebellar lobule segmentation with application to cerebellar structural analysis in cerebellar disease. NeuroImage 127, 435–444 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Cettour-Janet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cettour-Janet, P. et al. (2019). Hierarchical Approach for Neonate Cerebellum Segmentation from MRI: An Experimental Study. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics