Abstract
Functional Asplund’s metrics were recently introduced to perform pattern matching robust to lighting changes thanks to double-sided probing in the Logarithmic Image Processing (LIP) framework. Two metrics were defined, namely the LIP-multiplicative Asplund’s metric which is robust to variations of object thickness (or opacity) and the LIP-additive Asplund’s metric which is robust to variations of camera exposure-time (or light intensity). Maps of distances - i.e. maps of these metric values - were also computed between a reference template and an image. Recently, it was proven that the map of LIP-multiplicative Asplund’s distances corresponds to mathematical morphology operations. In this paper, the link between both metrics and between their corresponding distance maps will be demonstrated. It will be shown that the map of LIP-additive Asplund’s distances of an image can be computed from the map of the LIP-multiplicative Asplund’s distance of a transform of this image and vice-versa. Both maps will be related by the LIP isomorphism which will allow to pass from the image space of the LIP-additive distance map to the positive real function space of the LIP-multiplicative distance map. Experiments will illustrate this relation and the robustness of the LIP-additive Asplund’s metric to lighting changes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Asplund, E.: Comparison between plane symmetric convex bodies and parallelograms. Math. Scand. 8, 171–180 (1960). https://doi.org/10.7146/math.scand.a-10606
Banon, G., Faria, S.: Morphological approach for template matching. In: Proceedings of X Brazilian Symposium on Computer Graphics and Image Process, pp. 171–178. IEEE Computer Society, October 1997. https://doi.org/10.1109/SIGRA.1997.625169
Barat, C., Ducottet, C., Jourlin, M.: Virtual double-sided image probing: a unifying framework for non-linear grayscale pattern matching. Pattern Recogn. 43(10), 3433–3447 (2010). https://doi.org/10.1016/j.patcog.2010.04.020
Brailean, J., Sullivan, B., Chen, C., Giger, M.: Evaluating the EM algorithm for image processing using a human visual fidelity criterion. In: International Conference on Acoustics, Speech, and Signal Process, ICASSP-1991, vol 4, pp. 2957–2960, April 1991. https://doi.org/10.1109/ICASSP.1991.151023
Foresti, G.L., Micheloni, C., Snidaro, L., Remagnino, P., Ellis, T.: Active video-based surveillance system: the low-level image and video processing techniques needed for implementation. IEEE Sig. Process. Mag. 22(2), 25–37 (2005). https://doi.org/10.1109/MSP.2005.1406473
Grünbaum, B.: Measures of symmetry for convex sets. In: Proceedings of Symposium in Pure Mathematics, vol. 7, pp. 233–270. American Mathematical Society, Providence, RI (1963). https://doi.org/10.1090/pspum/007
Hautière, N., Aubert, D., Jourlin, M.: Measurement of local contrast in images, application to the measurement of visibility distance through use of an onboard camera. Traitement du Signal 23(2), 145–158 (2006). http://hdl.handle.net/2042/5826
Heijmans, H.: Morphological image operators. In: Advances in Imaging and Electron Physics: Supplement, vol. 25. Academic Press, Boston (1994). https://books.google.fr/books?id=G-hRAAAAMAAJ
Jourlin, M., Couka, E., Abdallah, B., Corvo, J., Breugnot, J.: Asplünd’s metric defined in the Logarithmic Image Processing (LIP) framework: a new way to perform double-sided image probing for non-linear grayscale pattern matching. Pattern Recognit. 47(9), 2908–2924 (2014). https://doi.org/10.1016/j.patcog.2014.03.031
Jourlin, M., Pinoli, J.: Logarithmic image processing: the mathematical and physical framework for the representation and processing of transmitted images. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 115, pp. 129–196. Elsevier, Amsterdam (2001). https://doi.org/10.1016/S1076-5670(01)80095-1
Jourlin, M.: Logarithmic image processing: theory and applications. In: Advances in Imaging and Electron Physics, vol. 195. Elsevier Science, Amsterdam (2016). https://doi.org/10.1016/S1076-5670(16)30078-7
Jourlin, M., Carré, M., Breugnot, J., Bouabdellah, M.: Chapter 7 - Logarithmic image processing: additive contrast, multiplicative contrast, and associated metrics. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 171, pp. 357–406. Elsevier, Amsterdam (2012). https://doi.org/10.1016/B978-0-12-394297-5.00007-6
Jourlin, M., Pinoli, J.C.: Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model. Sig. Process. 41(2), 225–237 (1995). https://doi.org/10.1016/0165-1684(94)00102-6
Jourlin, M., Pinoli, J.: A model for logarithmic image-processing. J. Microsc. 149(1), 21–35 (1988). https://doi.org/10.1111/j.1365-2818.1988.tb04559.x
Khosravi, M., Schafer, R.: Template matching based on a grayscale hit-or-miss transform. IEEE Trans. Image Process. 5(6), 1060–1066 (1996). https://doi.org/10.1109/83.503921
Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)
Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications, 1st edn. Wiley, Hoboken (2013). https://doi.org/10.1002/9781118600788
Navarro, L., Deng, G., Courbebaisse, G.: The symmetric logarithmic image processing model. Digit. Sig. Process. 23(5), 1337–1343 (2013). https://doi.org/10.1016/j.dsp.2013.07.001
Noyel, G., Angulo, J., Jeulin, D., Balvay, D., Cuenod, C.A.: Multivariate mathematical morphology for DCE-MRI image analysis in angiogenesis studies. Image Anal. Stereol. 34(1), 1–25 (2014)
Noyel, G., Thomas, R., Bhakta, G., Crowder, A., Owens, D., Boyle, P.: Superimposition of eye fundus images for longitudinal analysis from large public health databases. Biomed. Phys. Eng. Express 3(4), 045015 (2017). https://doi.org/10.1088/2057-1976/aa7d16
Noyel, G.: Method of monitoring the appearance of the surface of a tire. International PCT patent WO2011131410 (A1), also published as: US9002093 (B2), FR2959046 (B1), JP5779232 (B2), EP2561479 (A1), CN102844791 (B), BR112012025402 (A2), October 2011. https://patentscope.wipo.int/search/en/WO2011131410
Noyel, G., Jeulin, D., Parra-Denis, E., Bilodeau, M.: Method of checking the appearance of the surface of a tyre. International PCT patent WO2013045593 (A1), also published as US9189841 (B2), FR2980735 (B1), EP2761587 (A1), CN103843034 (A), April 2013. https://patentscope.wipo.int/search/en/WO2013045593
Noyel, G., Jourlin, M.: Double-sided probing by map of Asplund’s distances using logarithmic image processing in the framework of mathematical morphology. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 408–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_33
Noyel, G., Jourlin, M.: A simple expression for the map of Asplund’s distances with the multiplicative Logarithmic Image Processing (LIP) law. In: 12th European Congress for Stereology and Image Analysis, Kaiserslautern, Germany, September 2017. https://arxiv.org/abs/1708.08992
Odone, F., Trucco, E., Verri, A.: General purpose matching of grey level arbitrary images. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 573–582. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45129-3_53
Parrot: Parrot image from the YFCC100M dataset (2008). Licence CC BY 2.0. https://www.flickr.com/photos/mdpettitt/2744081052
Serra, J.: Image Analysis and Mathematical Morphology: Theoretical Advances, vol. 2. Academic Press, Boston (1988). https://books.google.fr/books?id=BpdTAAAAYAAJ
Serra, J., Cressie, N.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, New York (1982). https://books.google.fr/books?id=RQIUAQAAIAAJ
Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-05088-0
Thomee, B., et al.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016). https://doi.org/10.1145/2812802
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Noyel, G. (2019). A Link Between the Multiplicative and Additive Functional Asplund’s Metrics. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-20867-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20866-0
Online ISBN: 978-3-030-20867-7
eBook Packages: Computer ScienceComputer Science (R0)