Skip to main content

A Link Between the Multiplicative and Additive Functional Asplund’s Metrics

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

Functional Asplund’s metrics were recently introduced to perform pattern matching robust to lighting changes thanks to double-sided probing in the Logarithmic Image Processing (LIP) framework. Two metrics were defined, namely the LIP-multiplicative Asplund’s metric which is robust to variations of object thickness (or opacity) and the LIP-additive Asplund’s metric which is robust to variations of camera exposure-time (or light intensity). Maps of distances - i.e. maps of these metric values - were also computed between a reference template and an image. Recently, it was proven that the map of LIP-multiplicative Asplund’s distances corresponds to mathematical morphology operations. In this paper, the link between both metrics and between their corresponding distance maps will be demonstrated. It will be shown that the map of LIP-additive Asplund’s distances of an image can be computed from the map of the LIP-multiplicative Asplund’s distance of a transform of this image and vice-versa. Both maps will be related by the LIP isomorphism which will allow to pass from the image space of the LIP-additive distance map to the positive real function space of the LIP-multiplicative distance map. Experiments will illustrate this relation and the robustness of the LIP-additive Asplund’s metric to lighting changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asplund, E.: Comparison between plane symmetric convex bodies and parallelograms. Math. Scand. 8, 171–180 (1960). https://doi.org/10.7146/math.scand.a-10606

    Article  MathSciNet  MATH  Google Scholar 

  2. Banon, G., Faria, S.: Morphological approach for template matching. In: Proceedings of X Brazilian Symposium on Computer Graphics and Image Process, pp. 171–178. IEEE Computer Society, October 1997. https://doi.org/10.1109/SIGRA.1997.625169

  3. Barat, C., Ducottet, C., Jourlin, M.: Virtual double-sided image probing: a unifying framework for non-linear grayscale pattern matching. Pattern Recogn. 43(10), 3433–3447 (2010). https://doi.org/10.1016/j.patcog.2010.04.020

    Article  MATH  Google Scholar 

  4. Brailean, J., Sullivan, B., Chen, C., Giger, M.: Evaluating the EM algorithm for image processing using a human visual fidelity criterion. In: International Conference on Acoustics, Speech, and Signal Process, ICASSP-1991, vol 4, pp. 2957–2960, April 1991. https://doi.org/10.1109/ICASSP.1991.151023

  5. Foresti, G.L., Micheloni, C., Snidaro, L., Remagnino, P., Ellis, T.: Active video-based surveillance system: the low-level image and video processing techniques needed for implementation. IEEE Sig. Process. Mag. 22(2), 25–37 (2005). https://doi.org/10.1109/MSP.2005.1406473

    Article  Google Scholar 

  6. Grünbaum, B.: Measures of symmetry for convex sets. In: Proceedings of Symposium in Pure Mathematics, vol. 7, pp. 233–270. American Mathematical Society, Providence, RI (1963). https://doi.org/10.1090/pspum/007

    MATH  Google Scholar 

  7. Hautière, N., Aubert, D., Jourlin, M.: Measurement of local contrast in images, application to the measurement of visibility distance through use of an onboard camera. Traitement du Signal 23(2), 145–158 (2006). http://hdl.handle.net/2042/5826

  8. Heijmans, H.: Morphological image operators. In: Advances in Imaging and Electron Physics: Supplement, vol. 25. Academic Press, Boston (1994). https://books.google.fr/books?id=G-hRAAAAMAAJ

  9. Jourlin, M., Couka, E., Abdallah, B., Corvo, J., Breugnot, J.: Asplünd’s metric defined in the Logarithmic Image Processing (LIP) framework: a new way to perform double-sided image probing for non-linear grayscale pattern matching. Pattern Recognit. 47(9), 2908–2924 (2014). https://doi.org/10.1016/j.patcog.2014.03.031

    Article  Google Scholar 

  10. Jourlin, M., Pinoli, J.: Logarithmic image processing: the mathematical and physical framework for the representation and processing of transmitted images. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 115, pp. 129–196. Elsevier, Amsterdam (2001). https://doi.org/10.1016/S1076-5670(01)80095-1

    Google Scholar 

  11. Jourlin, M.: Logarithmic image processing: theory and applications. In: Advances in Imaging and Electron Physics, vol. 195. Elsevier Science, Amsterdam (2016). https://doi.org/10.1016/S1076-5670(16)30078-7

    Google Scholar 

  12. Jourlin, M., Carré, M., Breugnot, J., Bouabdellah, M.: Chapter 7 - Logarithmic image processing: additive contrast, multiplicative contrast, and associated metrics. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 171, pp. 357–406. Elsevier, Amsterdam (2012). https://doi.org/10.1016/B978-0-12-394297-5.00007-6

    Google Scholar 

  13. Jourlin, M., Pinoli, J.C.: Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model. Sig. Process. 41(2), 225–237 (1995). https://doi.org/10.1016/0165-1684(94)00102-6

    Article  MATH  Google Scholar 

  14. Jourlin, M., Pinoli, J.: A model for logarithmic image-processing. J. Microsc. 149(1), 21–35 (1988). https://doi.org/10.1111/j.1365-2818.1988.tb04559.x

    Article  Google Scholar 

  15. Khosravi, M., Schafer, R.: Template matching based on a grayscale hit-or-miss transform. IEEE Trans. Image Process. 5(6), 1060–1066 (1996). https://doi.org/10.1109/83.503921

    Article  Google Scholar 

  16. Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)

    Google Scholar 

  17. Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications, 1st edn. Wiley, Hoboken (2013). https://doi.org/10.1002/9781118600788

    Book  MATH  Google Scholar 

  18. Navarro, L., Deng, G., Courbebaisse, G.: The symmetric logarithmic image processing model. Digit. Sig. Process. 23(5), 1337–1343 (2013). https://doi.org/10.1016/j.dsp.2013.07.001

    Article  MathSciNet  Google Scholar 

  19. Noyel, G., Angulo, J., Jeulin, D., Balvay, D., Cuenod, C.A.: Multivariate mathematical morphology for DCE-MRI image analysis in angiogenesis studies. Image Anal. Stereol. 34(1), 1–25 (2014)

    Article  MathSciNet  Google Scholar 

  20. Noyel, G., Thomas, R., Bhakta, G., Crowder, A., Owens, D., Boyle, P.: Superimposition of eye fundus images for longitudinal analysis from large public health databases. Biomed. Phys. Eng. Express 3(4), 045015 (2017). https://doi.org/10.1088/2057-1976/aa7d16

    Article  Google Scholar 

  21. Noyel, G.: Method of monitoring the appearance of the surface of a tire. International PCT patent WO2011131410 (A1), also published as: US9002093 (B2), FR2959046 (B1), JP5779232 (B2), EP2561479 (A1), CN102844791 (B), BR112012025402 (A2), October 2011. https://patentscope.wipo.int/search/en/WO2011131410

  22. Noyel, G., Jeulin, D., Parra-Denis, E., Bilodeau, M.: Method of checking the appearance of the surface of a tyre. International PCT patent WO2013045593 (A1), also published as US9189841 (B2), FR2980735 (B1), EP2761587 (A1), CN103843034 (A), April 2013. https://patentscope.wipo.int/search/en/WO2013045593

  23. Noyel, G., Jourlin, M.: Double-sided probing by map of Asplund’s distances using logarithmic image processing in the framework of mathematical morphology. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 408–420. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_33

    Chapter  MATH  Google Scholar 

  24. Noyel, G., Jourlin, M.: A simple expression for the map of Asplund’s distances with the multiplicative Logarithmic Image Processing (LIP) law. In: 12th European Congress for Stereology and Image Analysis, Kaiserslautern, Germany, September 2017. https://arxiv.org/abs/1708.08992

  25. Odone, F., Trucco, E., Verri, A.: General purpose matching of grey level arbitrary images. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds.) IWVF 2001. LNCS, vol. 2059, pp. 573–582. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45129-3_53

    Chapter  Google Scholar 

  26. Parrot: Parrot image from the YFCC100M dataset (2008). Licence CC BY 2.0. https://www.flickr.com/photos/mdpettitt/2744081052

  27. Serra, J.: Image Analysis and Mathematical Morphology: Theoretical Advances, vol. 2. Academic Press, Boston (1988). https://books.google.fr/books?id=BpdTAAAAYAAJ

  28. Serra, J., Cressie, N.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, New York (1982). https://books.google.fr/books?id=RQIUAQAAIAAJ

  29. Soille, P.: Morphological Image Analysis: Principles and Applications, 2nd edn. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-662-05088-0

    Book  MATH  Google Scholar 

  30. Thomee, B., et al.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016). https://doi.org/10.1145/2812802

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Noyel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noyel, G. (2019). A Link Between the Multiplicative and Additive Functional Asplund’s Metrics. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics