Abstract
We state in this paper a strong relation existing between Mathematical Morphology and Morse Theory when we work with 1D \(\mathfrak {D}\)-Morse functions. Specifically, in Mathematical Morphology, a classic way to extract robust markers for segmentation purposes, is to use the dynamics. On the other hand, in Morse Theory, a well-known tool to simplify the Morse-Smale complexes representing the topological information of a \(\mathfrak {D}\)-Morse function is the persistence. We show that pairing by persistence is equivalent to pairing by dynamics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009)
Čomić, L., De Floriani, L., Iuricich, F., Magillo, P.: Computing a discrete Morse gradient from a watershed decomposition. Comput. Graph. 58, 43–52 (2016)
Čomić, L., De Floriani, L., Magillo, P., Iuricich, F.: Morphological Modeling of Terrains and Volume Data. SCS. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-2149-2
Cousty, J., Bertrand, G., Couprie, M., Najman, L.: Collapses and watersheds in pseudomanifolds of arbitrary dimension. J. Math. Imaging Vis. 50(3), 261–285 (2014)
Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watershed cuts: minimum spanning forests and the drop of water principle. IEEE Trans. Pattern Anal. Mach. Intell. 31(8), 1362–1374 (2009)
De Floriani, L., Iuricich, F., Magillo, P., Simari, P.: Discrete morse versus watershed decompositions of tessellated manifolds. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8157, pp. 339–348. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41184-7_35
Edelsbrunner, H., Harer, J.: Persistent homology - a survey. Contemp. Math. 453, 257–282 (2008)
Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, New York (2010)
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: Foundations of Computer Science, pp. 454–463. IEEE (2000)
Forman, R.: A user’s guide to Discrete Morse Theory. Séminaire Lotharingien de Combinatoire 48, 1–35 (2002)
Grimaud, M.: La géodésie numérique en Morphologie Mathématique. Application à la détection automatique des microcalcifications en mammographie numérique. Ph.D. thesis, École des Mines de Paris (1991)
Grimaud, M.: New measure of contrast: the dynamics. In: Image Algebra and Morphological Image Processing III, vol. 1769, pp. 292–306. International Society for Optics and Photonics (1992)
Milnor, J.W., Spivak, M., Wells, R.: Morse Theory. Princeton University Press, Princeton (1963)
Najman, L., Schmitt, M.: Watershed of a continuous function. Signal Process. 38(1), 99–112 (1994)
Najman, L., Schmitt, M.: Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(12), 1163–1173 (1996)
Najman, L., Talbot, H.: Mathematical Morphology: From Theory to Applications. Wiley, Hoboken (2013)
Serra, J.: Introduction to mathematical morphology. Comput. Vis. Graph. Image Process. 35(3), 283–305 (1986)
Serra, J., Soille, P.: Mathematical Morphology and its Applications to Image Processing, vol. 2. Springer Science & Business Media, Heidelberg (2012)
Vachier, C.: Extraction de caractéristiques, segmentation d’image et Morphologie Mathématique. Ph.D. thesis, École Nationale Supérieure des Mines de Paris (1995)
Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Boutry, N., Géraud, T., Najman, L. (2019). An Equivalence Relation Between Morphological Dynamics and Persistent Homology in 1D. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-20867-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20866-0
Online ISBN: 978-3-030-20867-7
eBook Packages: Computer ScienceComputer Science (R0)