Skip to main content

Local Uniqueness Under Two Directions in Discrete Tomography: A Graph-Theoretical Approach

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

The goal of discrete tomography is to reconstruct an image, seen as a finite set of pixels, by knowing its projections along given directions. Uniqueness of reconstruction cannot be guaranteed in general, because of the existence of the switching components. Therefore, instead of considering the uniqueness problem for the whole image, in this paper we focus on local uniqueness, i.e., we seek what pixels have uniquely determined value. Two different kinds of local uniqueness are presented: one related to the structure of the directions and of the grid supporting the image, having as a sub-case the region of uniqueness (ROU), and the other one depending on the available projections. In the case when projections are taken along two lattice directions, both kinds of uniqueness have been characterized in a graph-theoretical reformulation. This paper is intended to be a starting point in the construction of connections between pixels with uniquely determined value and graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharoni, R., Herman, G., Kuba, A.: Binary vectors partially determined by linear equation systems. Discrete Math. 171(1–3), 1–16 (1997). https://doi.org/10.1016/S0012-365X(96)00068-4

    Article  MathSciNet  MATH  Google Scholar 

  2. Batenburg, K.J.: Network flow algorithms for discrete tomography. In: Herman, G.T., Kuba, A. (eds.) Advances in discrete Tomography and Its Applications, pp. 175–205. Springer, Boston (2007). https://doi.org/10.1007/978-0-8176-4543-4_9

    Chapter  MATH  Google Scholar 

  3. Batenburg, K.J., Kosters, W.: Solving nonograms by combining relaxations. Pattern Recogn. 42(8), 1672–1683 (2009). https://doi.org/10.1016/j.patcog.2008.12.003

    Article  MATH  Google Scholar 

  4. Batenburg, K.J., Sijbers, J.: Generic iterative subset algorithms for discrete tomography. Discrete Appl. Math. 157(3), 438–451 (2009). https://doi.org/10.1016/j.dam.2008.05.033

    Article  MathSciNet  MATH  Google Scholar 

  5. Brunetti, S., Dulio, P., Peri, C.: Discrete tomography determination of bounded lattice sets from four X-rays. Discrete Appl. Math. 161(15), 2281–2292 (2013). https://doi.org/10.1016/j.dam.2012.09.010

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, W.: Integral matrices with given row and column sums. J. Combin. Theory Ser. A 61(2), 153–172 (1992). https://doi.org/10.1016/0097-3165(92)90015-M

    Article  MathSciNet  MATH  Google Scholar 

  7. Dulio, P., Frosini, A., Pagani, S.M.C.: Uniqueness regions under sets of generic projections in discrete tomography. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 285–296. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09955-2_24

    Chapter  MATH  Google Scholar 

  8. Dulio, P., Frosini, A., Pagani, S.M.C.: A geometrical characterization of regions of uniqueness and applications to discrete tomography. Inverse Prob. 31(12), 125011 (2015). https://doi.org/10.1088/0266-5611/31/12/125011

    Article  MathSciNet  MATH  Google Scholar 

  9. Dulio, P., Frosini, A., Pagani, S.M.C.: Geometrical characterization of the uniqueness regions under special sets of three directions in discrete tomography. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 105–116. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32360-2_8

    Chapter  MATH  Google Scholar 

  10. Dulio, P., Frosini, A., Pagani, S.M.C.: Regions of uniqueness quickly reconstructed by three directions in discrete tomography. Fund. Inform. 155(4), 407–423 (2017). https://doi.org/10.3233/FI-2017-1592

    Article  MathSciNet  MATH  Google Scholar 

  11. Fishburn, P., Lagarias, J., Reeds, J., Shepp, L.: Sets uniquely determined by projections on axes. II. Discrete case. Discrete Math. 91(2), 149–159 (1991). https://doi.org/10.1016/0012-365X(91)90106-C

    Article  MathSciNet  MATH  Google Scholar 

  12. Gale, D.: A theorem on flows in networks. Pacific J. Math. 7(2), 1073–1082 (1957). https://doi.org/10.2140/pjm.1957.7.1073

    Article  MathSciNet  MATH  Google Scholar 

  13. Gardner, R.J., Gritzmann, P.: Discrete tomography: determination of finite sets by X-rays. Trans. Amer. Math. Soc. 349(6), 2271–2295 (1997). https://doi.org/10.1090/S0002-9947-97-01741-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discrete Math. 202(1–3), 45–71 (1999). https://doi.org/10.1016/S0012-365X(98)00347-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math. 534, 119–128 (2001). https://doi.org/10.1515/crll.2001.037

    Article  MathSciNet  MATH  Google Scholar 

  16. Katz, M.: Questions of Uniqueness and Resolution in Reconstruction from Projections. Lecture Notes in Biomathematics. Springer, Heidelberg (1978). https://doi.org/10.1007/978-3-642-45507-0

    Book  MATH  Google Scholar 

  17. Normand, N., Kingston, A., Évenou, P.: A geometry driven reconstruction algorithm for the mojette transform. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 122–133. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_11

    Chapter  MATH  Google Scholar 

  18. Pagani, S.M.C., Tijdeman, R.: Algorithms for fast reconstruction by discrete tomography. Researchgate preprint. https://doi.org/10.13140/RG.2.2.20108.56969

  19. Ryser, H.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371–377 (1957). https://doi.org/10.4153/CJM-1957-044-3

    Article  MathSciNet  MATH  Google Scholar 

  20. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). https://doi.org/10.1137/0201010

    Article  MathSciNet  MATH  Google Scholar 

  21. de Werra, D., Costa, M., Picouleau, C., Ries, B.: On the use of graphs in discrete tomography. 4OR 6(2), 101–123 (2008). https://doi.org/10.1007/s10288-008-0077-5

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia M. C. Pagani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pagani, S.M.C. (2019). Local Uniqueness Under Two Directions in Discrete Tomography: A Graph-Theoretical Approach. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics