Abstract
The goal of discrete tomography is to reconstruct an image, seen as a finite set of pixels, by knowing its projections along given directions. Uniqueness of reconstruction cannot be guaranteed in general, because of the existence of the switching components. Therefore, instead of considering the uniqueness problem for the whole image, in this paper we focus on local uniqueness, i.e., we seek what pixels have uniquely determined value. Two different kinds of local uniqueness are presented: one related to the structure of the directions and of the grid supporting the image, having as a sub-case the region of uniqueness (ROU), and the other one depending on the available projections. In the case when projections are taken along two lattice directions, both kinds of uniqueness have been characterized in a graph-theoretical reformulation. This paper is intended to be a starting point in the construction of connections between pixels with uniquely determined value and graphs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aharoni, R., Herman, G., Kuba, A.: Binary vectors partially determined by linear equation systems. Discrete Math. 171(1–3), 1–16 (1997). https://doi.org/10.1016/S0012-365X(96)00068-4
Batenburg, K.J.: Network flow algorithms for discrete tomography. In: Herman, G.T., Kuba, A. (eds.) Advances in discrete Tomography and Its Applications, pp. 175–205. Springer, Boston (2007). https://doi.org/10.1007/978-0-8176-4543-4_9
Batenburg, K.J., Kosters, W.: Solving nonograms by combining relaxations. Pattern Recogn. 42(8), 1672–1683 (2009). https://doi.org/10.1016/j.patcog.2008.12.003
Batenburg, K.J., Sijbers, J.: Generic iterative subset algorithms for discrete tomography. Discrete Appl. Math. 157(3), 438–451 (2009). https://doi.org/10.1016/j.dam.2008.05.033
Brunetti, S., Dulio, P., Peri, C.: Discrete tomography determination of bounded lattice sets from four X-rays. Discrete Appl. Math. 161(15), 2281–2292 (2013). https://doi.org/10.1016/j.dam.2012.09.010
Chen, W.: Integral matrices with given row and column sums. J. Combin. Theory Ser. A 61(2), 153–172 (1992). https://doi.org/10.1016/0097-3165(92)90015-M
Dulio, P., Frosini, A., Pagani, S.M.C.: Uniqueness regions under sets of generic projections in discrete tomography. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 285–296. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09955-2_24
Dulio, P., Frosini, A., Pagani, S.M.C.: A geometrical characterization of regions of uniqueness and applications to discrete tomography. Inverse Prob. 31(12), 125011 (2015). https://doi.org/10.1088/0266-5611/31/12/125011
Dulio, P., Frosini, A., Pagani, S.M.C.: Geometrical characterization of the uniqueness regions under special sets of three directions in discrete tomography. In: Normand, N., Guédon, J., Autrusseau, F. (eds.) DGCI 2016. LNCS, vol. 9647, pp. 105–116. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32360-2_8
Dulio, P., Frosini, A., Pagani, S.M.C.: Regions of uniqueness quickly reconstructed by three directions in discrete tomography. Fund. Inform. 155(4), 407–423 (2017). https://doi.org/10.3233/FI-2017-1592
Fishburn, P., Lagarias, J., Reeds, J., Shepp, L.: Sets uniquely determined by projections on axes. II. Discrete case. Discrete Math. 91(2), 149–159 (1991). https://doi.org/10.1016/0012-365X(91)90106-C
Gale, D.: A theorem on flows in networks. Pacific J. Math. 7(2), 1073–1082 (1957). https://doi.org/10.2140/pjm.1957.7.1073
Gardner, R.J., Gritzmann, P.: Discrete tomography: determination of finite sets by X-rays. Trans. Amer. Math. Soc. 349(6), 2271–2295 (1997). https://doi.org/10.1090/S0002-9947-97-01741-8
Gardner, R.J., Gritzmann, P., Prangenberg, D.: On the computational complexity of reconstructing lattice sets from their X-rays. Discrete Math. 202(1–3), 45–71 (1999). https://doi.org/10.1016/S0012-365X(98)00347-1
Hajdu, L., Tijdeman, R.: Algebraic aspects of discrete tomography. J. Reine Angew. Math. 534, 119–128 (2001). https://doi.org/10.1515/crll.2001.037
Katz, M.: Questions of Uniqueness and Resolution in Reconstruction from Projections. Lecture Notes in Biomathematics. Springer, Heidelberg (1978). https://doi.org/10.1007/978-3-642-45507-0
Normand, N., Kingston, A., Évenou, P.: A geometry driven reconstruction algorithm for the mojette transform. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 122–133. Springer, Heidelberg (2006). https://doi.org/10.1007/11907350_11
Pagani, S.M.C., Tijdeman, R.: Algorithms for fast reconstruction by discrete tomography. Researchgate preprint. https://doi.org/10.13140/RG.2.2.20108.56969
Ryser, H.: Combinatorial properties of matrices of zeros and ones. Canad. J. Math. 9, 371–377 (1957). https://doi.org/10.4153/CJM-1957-044-3
Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972). https://doi.org/10.1137/0201010
de Werra, D., Costa, M., Picouleau, C., Ries, B.: On the use of graphs in discrete tomography. 4OR 6(2), 101–123 (2008). https://doi.org/10.1007/s10288-008-0077-5
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Pagani, S.M.C. (2019). Local Uniqueness Under Two Directions in Discrete Tomography: A Graph-Theoretical Approach. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-20867-7_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20866-0
Online ISBN: 978-3-030-20867-7
eBook Packages: Computer ScienceComputer Science (R0)