Skip to main content

Gradient-Guided DCNN for Inverse Halftoning and Image Expanding

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Included in the following conference series:

Abstract

Inverse halftoning and image expanding refer to the ill-posed problems which restore higher-bit images from lower bit ones. Many scholars have studied these problems so far, but the restored images still suffer either quantization artifacts or fine detail losses. Although recent deep convolutional neural network (DCNN) based methods have shown its advantage in these two problems, it is hard to restore high quality images with fine details if no extra information is feeded to the network. To solve this problem, this paper proposes a gradient-guided DCNN model for inverse halftoning and image expanding. The DCNN model consists of two stages. In the first stage, two subnetworks are designed to explicitly predict the gradient maps of the input image, which account for the detail information of image. In the second stage, the gradient maps, concatenated with the input image, are feeded to another subnetwork to guide the reconstruction of the final results. Experimental results show that our method outperforms the state-of-arts in terms of both visual quality and numerical evaluation. In particular, our method better recovers the fine details of the images.

The work is supported by the National Key R&D Program of China (2018YF-B0203904), NSFC from PRC (61872137, 61502158, 61502157, 61472131, 61772191), Hunan NSF (2017JJ3042), and Science and Technology Key Projects of Hunan Province (2015TP1004, 2015SK2087, 2015JC1001, 2016JC2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayer, B.E.: An optimal method for two-level rendition of continuous-tone pictures. In: International Conference on Communications (1973)

    Google Scholar 

  2. Bhooshan, S., Kumar, V.: 2D T-law: a novel approach for image companding (2010)

    Google Scholar 

  3. Bozkurt, G., Cetin, A.E.: Restoration of error-diffused images using POCS. In: 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 3225–3228 (1999)

    Google Scholar 

  4. Catté, F., Lions, P.L., Morel, J.M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29(1), 182–193 (1992). https://doi.org/10.1137/0729012

    Article  MathSciNet  MATH  Google Scholar 

  5. Eschbach, R., Knox, K.T.: Error-diffusion algorithm with edge enhancement. J. Opt. Soc. Am. A 8(12), 1844–1850 (1991)

    Article  Google Scholar 

  6. Floyd, R.W.: An adaptive algorithm for spatial grayscale. In: Proceedings of Society Information Display, vol. 17, pp. 75–77 (1976)

    Google Scholar 

  7. Hein, S., Zakhor, A.: Halftone to continuous-tone conversion of error-diffusion coded images. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 4(2), 208–16 (1995)

    Article  Google Scholar 

  8. Hou, X., Qiu, G.: Image companding and inverse halftoning using deep convolutional neural networks. CoRR abs/1707.00116 (2017)

    Google Scholar 

  9. Huang, W.B., Chang, W.C., Lu, Y.W., Su, A.W.Y., Kuo, Y.H.: Halftone/contone conversion using neural networks. In: 2004 International Conference on Image Processing, ICIP 2004, vol. 5, pp. 3547–3550, October 2004. https://doi.org/10.1109/ICIP.2004.1421882

  10. Huang, W.B., Su, A.W.Y., Kuo, Y.H.: Neural network based method for image halftoning and inverse halftoning. Expert Syst. Appl. 34(4), 2491–2501 (2008)

    Article  Google Scholar 

  11. Jarvis, J., Roberts, C.: A new technique for displaying continuous tone images on a bilevel display. IEEE Trans. Commun. 24(8), 891–898 (1976). https://doi.org/10.1109/TCOM.1976.1093397

    Article  Google Scholar 

  12. Mulligan, J.B., Ahumada, J.A.: Principled halftoning based on human vision models (1992). https://doi.org/10.1117/12.135960

  13. Kang, H.R.: Digital Color Halftoning. Society of Photo-Optical Instrumentation Engineers. SPIE, Bellingham (1999)

    Google Scholar 

  14. Kim, S.H., Allebach, J.P.: Impact of HVS models on model-based halftoning. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 11(3), 258–69 (2002)

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. Computer Science (2014)

    Google Scholar 

  16. Kite, T.D., Damera-Venkata, N., Evans, B.L., Bovik, A.C.: A fast, high-quality inverse halftoning algorithm for error diffused halftones. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 9(9), 1583–92 (2000)

    Article  Google Scholar 

  17. Larson, G.W., Rushmeier, H., Piatko, C.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Trans. Vis. 3(4), 291–306 (1997)

    Google Scholar 

  18. Li, P., Allebach, J.P.: Look-up-table based halftoning algorithm. IEEE Trans. Image Process. 9(9), 1593–1603 (2000)

    Article  Google Scholar 

  19. Li, Y., Huang, J.-B., Ahuja, N., Yang, M.-H.: Deep joint image filtering. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_10

    Chapter  Google Scholar 

  20. Li, Y., Sharan, L., Adelson, E.H.: Compressing and companding high dynamic range images with subband architectures. ACM Trans. Graph. 24(3), 836–844 (2005). https://doi.org/10.1145/1073204.1073271

    Article  Google Scholar 

  21. Lin, T., et al.: Microsoft COCO: common objects in context. CoRR abs/1405.0312 (2014). http://arxiv.org/abs/1405.0312

  22. Mese, M., Vaidyanathan, P.P.: Look-up table (LUT) method for inverse halftoning. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 10(10), 1566–78 (2001)

    Article  Google Scholar 

  23. Mese, M., Vaidyanathan, P.P.: Tree-structured method for LUT inverse halftoning and for image halftoning. IEEE Trans. on Image Process. 11, 644–655 (2002)

    Article  Google Scholar 

  24. Mirza, M., Osindero, S.: Conditional generative adversarial nets. CoRR abs/1411.1784 (2014). http://arxiv.org/abs/1411.1784

  25. Pelcastre-Jimenez, F., Nakano-Miyatake, M., Toscano-Medina, K., Sanchez-Perez, G., Perez-Meana, H.: An inverse halftoning algorithm based on neural networks and UP(x) atomic function. In: International Conference on Telecommunications and Signal Processing, pp. 523–527 (2015)

    Google Scholar 

  26. Neelamani, R., Nowak, R.D., Baraniuk, R.G.: WInHD: wavelet-based inverse halftoning via deconvolution. IEEE Trans. Image Process. (2002)

    Google Scholar 

  27. Saika, Y., Inoue, J.I., Tanaka, H., Okada, M.: Bayes-optimal solution to inverse halftoning based on statistical mechanics of the Q-ising model. Central Eur. J. Phys. 7(3), 444–456 (2009)

    Google Scholar 

  28. Stevenson, R.L.: Inverse halftoning via map estimation. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 6(4), 574 (1997)

    Article  Google Scholar 

  29. Sullivan, J.R., Ray, L.A., Miller, R.: Design of minimum visual modulation halftone patterns. IEEE Trans. Syst. Man Cybern. 21(1), 33–38 (1991). https://doi.org/10.1109/21.101134

    Article  Google Scholar 

  30. Thao, N.T.: Set theoretic inverse halftoning. In: Proceedings of International Conference on Image Processing, vol. 1, pp. 783–786 (1997)

    Google Scholar 

  31. Tumblin, J., Rushmeier, H.: Tone reproduction for realistic images. Comput. Graph. 13(6), 42–48 (1993)

    Article  Google Scholar 

  32. Unal, G.B., Cetin, A.E.: Restoration of error-diffused images using projection onto convex sets. IEEE Trans. Image Process. 10, 1836–1841 (2001)

    Article  Google Scholar 

  33. Wang, L., Hua, B.-S., Li, X.: Adaptive energy diffusion for blind inverse halftoning. In: Qiu, G., Lam, K.M., Kiya, H., Xue, X.-Y., Kuo, C.-C.J., Lew, M.S. (eds.) PCM 2010. LNCS, vol. 6297, pp. 470–480. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15702-8_43

    Chapter  Google Scholar 

  34. Wen, Z.Q., Lu, Y.L., Zeng, Z.G., Zhu, W.Q., Ai, J.H.: Optimizing template for lookup-table inverse halftoning using elitist genetic algorithm, January 2015

    Google Scholar 

  35. Xiao, Y., Pan, C., Xianyi Zhu, H.J., Zheng, Y.: Deep neural inverse halftoning. In: International Conference on Virtual Reality and Visualization (ICVRV 2017) (2017, to appear)

    Google Scholar 

  36. Xiong, Z., Orchard, M.T., Ramchandran, K.: Inverse halftoning using wavelets. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 8(10), 1479–83 (1999)

    Article  Google Scholar 

  37. Yang, B., Schmucker, M., Funk, W., Busch, C., Sun, S.: Integer DCT-based reversible watermarking for images using companding technique. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 5306, pp. 405–415 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, Y., Pan, C., Zheng, Y., Zhu, X., Qin, Z., Yuan, J. (2019). Gradient-Guided DCNN for Inverse Halftoning and Image Expanding. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics