Abstract
Recent studies have shown significant advance for multi-domain image-to-image translation, and generative adversarial networks (GANs) are widely used to address this problem. However, to train an effective image generator, existing methods all require a large number of domain-labeled images, which may take time and effort to collect for real-world problems. In this paper, we propose SemiStarGAN, a semi-supervised GAN network to tackle this issue. The proposed method utilizes unlabeled images by incorporating a novel discriminator/classifier network architecture—Y model, and two existing semi-supervised learning techniques—pseudo labeling and self-ensembling. Experimental results on the CelebA dataset using domains of facial attributes show that the proposed method achieves comparable performance with state-of-the-art methods using considerably less labeled training images.
This research was supported in part by the Ministry of Science and Technology of Taiwan (MOST 107-2633-E-002-001, 106-2218-E-002-043, 107-2811-E-002-018), National Taiwan University (NTU-107L104039), Intel Corporation, and Delta Electronics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)
Dai, Z., Yang, Z., Yang, F., Cohen, W.W., Salakhutdinov, R.: Good semi-supervised learning that requires a bad GAN. In: NIPS (2017)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)
Goodfellow, I., et al.: Generative adversarial nets. In: NIPS (2014)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of wasserstein GANs. In: NIPS (2017)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML (2017)
Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICML (2015)
Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2017)
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: CVPR (2017)
Lee, D.H.: Pseudo-label: the simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML (2013)
Li, C., Xu, K., Zhu, J., Zhang, B.: Triple generative adversarial nets. In: NIPS (2017)
Li, C., Wand, M.: Precomputed real-time texture synthesis with Markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43
Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: NIPS (2017)
Liu, M.Y., Tuzel, O.: Coupled generative adversarial networks. In: NIPS (2016)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)
Miyato, T., Maeda, S., Koyama, M., Ishii, S.: Virtual adversarial training: a regularization method for supervised and semi-supervised learning. ArXiv e-prints, April 2017
Odena, A.: Semi-supervised learning with generative adversarial networks. In: Workshop at ICML (2016)
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: ICML (2016)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS (2016)
Springenberg, J.T.: Unsupervised and semi-supervised learning with categorical generative adversarial networks. In: ICLR (2016)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)
Taigman, Y., Polyak, A., Wolf, L.: Unsupervised cross-domain image generation. In: ICLR (2017)
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. ArXiv e-prints (Jul 2016)
Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: ICCV (2017)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)
Zhu, J.-Y., Krähenbühl, P., Shechtman, E., Efros, A.A.: Generative visual manipulation on the natural image manifold. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 597–613. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_36
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networkss. In: ICCV (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Hsu, SY., Yang, CY., Huang, CC., Hsu, J.Yj. (2019). SemiStarGAN: Semi-supervised Generative Adversarial Networks for Multi-domain Image-to-Image Translation. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-20870-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20869-1
Online ISBN: 978-3-030-20870-7
eBook Packages: Computer ScienceComputer Science (R0)