Skip to main content

A Binary Optimization Approach for Constrained K-Means Clustering

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Included in the following conference series:

Abstract

K-Means clustering still plays an important role in many computer vision problems. While the conventional Lloyd method, which alternates between centroid update and cluster assignment, is primarily used in practice, it may converge to solutions with empty clusters. Furthermore, some applications may require the clusters to satisfy a specific set of constraints, e.g., cluster sizes, must-link/cannot-link. Several methods have been introduced to solve constrained K-Means clustering. Due to the non-convex nature of K-Means, however, existing approaches may result in sub-optimal solutions that poorly approximate the true clusters. In this work, we provide a new perspective to tackle this problem by considering constrained K-Means as a special instance of Binary Optimization. We then propose a novel optimization scheme to search for feasible solutions in the binary domain. This approach allows us to solve constrained K-Means clustering in such a way that multiple types of constraints can be simultaneously enforced. Experimental results on synthetic and real datasets show that our method provides better clustering accuracy with faster run time compared to several existing techniques.

This work was supported by an Asian Office of Aerospace Research and Development Grant FA2386-16-1-4027 and an ARC Future Fellowship FT140101229 to MM. Eriksson was supported by FT170100072.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

  2. 2.

    https://www.sheffield.ac.uk/eee/research/iel/research/face.

  3. 3.

    http://vision.ucsd.edu/content/yale-face-database.

  4. 4.

    http://vision.ucsd.edu/content/extended-yale-face-database-b-b.

References

  1. Althoff, T., Ulges, A., Dengel, A.: Balanced clustering for content-based image browsing. Series of the Gesellschaft fur Informatik, pp. 27–30 (2011)

    Google Scholar 

  2. Bertacco, L., Fischetti, M., Lodi, A.: A feasibility pump heuristic for general mixed-integer problems. Discret. Optim. 4(1), 63–76 (2007)

    Article  MathSciNet  Google Scholar 

  3. Bradley, P., Bennett, K., Demiriz, A.: Constrained K-Means Clustering, pp. 1–8. Microsoft Research, Redmond (2000)

    Google Scholar 

  4. Fard, M.M., Thonet, T., Gaussier, E.: Deep \(k\)-means: jointly clustering with \(k\)-means and learning representations. arXiv preprint arXiv:1806.10069 (2018)

  5. Fischetti, M., Glover, F., Lodi, A.: The feasibility pump. Math. Program. 104(1), 91–104 (2005)

    Article  MathSciNet  Google Scholar 

  6. Ge, T., He, K., Ke, Q., Sun, J.: Optimized product quantization for approximate nearest neighbor search. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2946–2953. IEEE (2013)

    Google Scholar 

  7. Geißler, B., Morsi, A., Schewe, L., Schmidt, M.: Penalty alternating direction methods for mixed-integer optimization: a new view on feasibility pumps. SIAM J. Optim. 27(3), 1611–1636 (2017)

    Article  MathSciNet  Google Scholar 

  8. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression, vol. 159. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4615-3626-0

    Book  MATH  Google Scholar 

  9. Jegou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell. 33(1), 117–128 (2011)

    Article  Google Scholar 

  10. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)

    Article  Google Scholar 

  11. Kalantidis, Y., Avrithis, Y.: Locally optimized product quantization for approximate nearest neighbor search. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2321–2328 (2014)

    Google Scholar 

  12. Khan, S.S., Ahmad, A.: Cluster center initialization algorithm for k-means clustering. Pattern Recogn. Lett. 25(11), 1293–1302 (2004)

    Article  Google Scholar 

  13. Le Tan, D.K., Le, H., Hoang, T., Do, T.T., Cheung, N.M.: DeepVQ: a deep network architecture for vector quantization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 2579–2582 (2018)

    Google Scholar 

  14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  15. Li, Z., Liu, J.: Constrained clustering by spectral kernel learning. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 421–427. IEEE (2009)

    Google Scholar 

  16. Liu, H., Han, J., Nie, F., Li, X.: Balanced clustering with least square regression (2017)

    Google Scholar 

  17. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  18. Mahajan, M., Nimbhorkar, P., Varadarajan, K.: The planar k-means problem is NP-hard. Theor. Comput. Sci. 442, 13–21 (2012)

    Article  MathSciNet  Google Scholar 

  19. Malinen, M.I., Fränti, P.: Balanced K-means for clustering. In: Fränti, P., Brown, G., Loog, M., Escolano, F., Pelillo, M. (eds.) S+SSPR 2014. LNCS, vol. 8621, pp. 32–41. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44415-3_4

    Chapter  Google Scholar 

  20. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Pena, J.M., Lozano, J.A., Larranaga, P.: An empirical comparison of four initialization methods for the k-means algorithm. Pattern Recogn. Lett. 20(10), 1027–1040 (1999)

    Article  Google Scholar 

  22. Rifkin, R.M., Lippert, R.A.: Notes on regularized least squares (2007)

    Google Scholar 

  23. Wagstaff, K., Cardie, C., Rogers, S., Schroedl, S.: Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 577–584. Citeseer (2001)

    Google Scholar 

  24. Wright, S., Nocedal, J.: Numerical optimization. Springer Sci. 35(67–68), 7 (1999)

    MATH  Google Scholar 

  25. Yang, B., Fu, X., Sidiropoulos, N.D., Hong, M.: Towards k-means-friendly spaces: simultaneous deep learning and clustering. arXiv preprint arXiv:1610.04794 (2016)

  26. Zhu, S., Wang, D., Li, T.: Data clustering with size constraints. Knowl.-Based Syst. 23(8), 883–889 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huu M. Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Le, H.M., Eriksson, A., Do, TT., Milford, M. (2019). A Binary Optimization Approach for Constrained K-Means Clustering. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics