Skip to main content

DHSGAN: An End to End Dehazing Network for Fog and Smoke

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Abstract

In this paper we propose a novel end-to-end convolution dehazing architecture, called De-Haze and Smoke GAN (DHSGAN). The model is trained under a generative adversarial network framework to effectively learn the underlying distribution of clean images for the generation of realistic haze-free images. We train the model on a dataset that is synthesized to include image degradation scenarios from varied conditions of fog, haze, and smoke in both indoor and outdoor settings. Experimental results on both synthetic and natural degraded images demonstrate that our method shows significant robustness over different haze conditions in comparison to the state-of-the-art methods. A group of studies are conducted to evaluate the effectiveness of each module of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman, D., Treibitz, T., Avidan, S.: Non-local image dehazing. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1674–1682 (2016)

    Google Scholar 

  2. Berman, D., Treibitz, T., Avidan, S.: Air-light estimation using haze-lines. In: 2017 IEEE International Conference on Computational Photography, pp. 1–9 (2017)

    Google Scholar 

  3. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Process. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  4. Chen, C., Do, M.N., Wang, J.: Robust image and video dehazing with visual artifact suppression via gradient residual minimization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 576–591. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_36

    Chapter  Google Scholar 

  5. Fattal, R.: Single image dehazing. ACM Trans. Graph. (TOG) 27(3), 72 (2008)

    Article  Google Scholar 

  6. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361 (2012)

    Google Scholar 

  7. Goodfellow, I.J., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27, pp. 2672–2680 (2014)

    Google Scholar 

  8. Gross, S., Wilber, M.: Training and investigating residual nets. Facebook AI Research, CA (2016). http://torch.ch/blog/2016/02/04/resnets.html

  9. Handa, A., Whelan, T., McDonald, J., Davison, A.J.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1524–1531 (2014)

    Google Scholar 

  10. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2011)

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  15. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  17. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114 (2017)

    Google Scholar 

  18. Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: AOD-NET: all-in-one dehazing network. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 4780–4788 (2017)

    Google Scholar 

  19. Li, B., et al.: Reside: a benchmark for single image dehazing. arXiv preprint arXiv:1712.04143 (2017)

  20. Li, Y., You, S., Brown, M.S., Tan, R.T.: Haze visibility enhancement: a survey and quantitative benchmarking. Comput. Vis. Image Underst. 165, 1–16 (2017)

    Article  Google Scholar 

  21. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  22. McCartney, E.J., Hall, F.F.: Optics of the atmosphere: Scattering by molecules and particles. Phys. Today 30(5), 76–77 (1977)

    Article  Google Scholar 

  23. McCormac, J., Handa, A., Leutenegger, S., Davison, A.J.: Scenenet RGB-D: Can 5M synthetic images beat generic imagenet pre-training on indoor segmentation? In: 2017 IEEE International Conference on Computer Vision, pp. 2697–2706 (2017)

    Google Scholar 

  24. Patraucean, V., Handa, A., Cipolla, R.: Spatio-temporal video autoencoder with differentiable memory. arXiv preprint arXiv:1511.06309 (2015)

  25. Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS 2015 Proceedings of the 28th International Conference on Neural Information Processing Systems, vol. 1, pp. 91–99 (2015)

    Google Scholar 

  26. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

    Google Scholar 

  27. Shin, Y.S., Cho, Y., Pandey, G., Kim, A.: Estimation of ambient light and transmission map with common convolutional architecture. In: OCEANS 2016 MTS/IEEE Monterey, pp. 1–7, September 2016. https://doi.org/10.1109/OCEANS.2016.7761342

  28. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  30. Szegedy, C., et al.: Going deeper with convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  31. Tan, R.T.: Visibility in bad weather from a single image. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2008

    Google Scholar 

  32. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  33. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. In: Computer Vision and Pattern Recognition, pp. 3194–3203 (2018)

    Google Scholar 

  34. Zhang, H., Sindagi, V., Patel, V.M.: Image de-raining using a conditional generative adversarial network. arXiv preprint arXiv:1701.05957 (2017)

  35. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2242–2251 (2017)

    Google Scholar 

  36. Zhu, Q., Mai, J., Shao, L.: A fast single image haze removal algorithm using color attenuation prior. IEEE Trans. Image Process. 24(11), 3522–3533 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramavtar Malav .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malav, R., Kim, A., Sahoo, S.R., Pandey, G. (2019). DHSGAN: An End to End Dehazing Network for Fog and Smoke. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20873-8_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20872-1

  • Online ISBN: 978-3-030-20873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics