Skip to main content

Deep Inverse Halftoning via Progressively Residual Learning

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Included in the following conference series:

Abstract

Inverse halftoning as a classic problem has been investigated in the last two decades, however, it is still a challenge to recover the continuous version with accurate details from halftone images. In this paper, we present a statistic learning based method to address it, leveraging Convolutional Neural Network (CNN) as a nonlinear mapping function. To exploit features as completely as possible, we propose a Progressively Residual Learning (PRL) network that synthesizes the global tone and subtle details from the halftone images in a progressive manner. Particularly, it contains two modules: Content Aggregation that removes the halftone patterns and reconstructs the continuous tone firstly, and Detail Enhancement that boosts the subtle structures incrementally via learning a residual image. Benefiting from this efficient architecture, the proposed network is superior to all the candidate networks employed in our experiments for inverse halftoning. Also, our approach outperforms the state of the art with a large margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    VOC2012: http://host.robots.ox.ac.uk/pascal/VOC/voc2012/.

  2. 2.

    PLACE205: http://places.csail.mit.edu/index.html.

References

  1. Analoui, M., Allebach, J.: New results on reconstruction of continuous-tone from halftone. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASS) (1992)

    Google Scholar 

  2. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  3. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: the Advances in Neural Information Processing Systems (NIPS) (2014)

    Google Scholar 

  4. Floyd, R.W.: An adaptive algorithm for spatial gray-scale. In: Society of Information Display (1976)

    Google Scholar 

  5. Freitas, P.G., Farias, M.C., Araujo, A.P.: Enhancing inverse halftoning via coupled dictionary training. Sig. Process.: Image Commun. 49, 1–8 (2016)

    Google Scholar 

  6. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: Advances in Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS) (2014)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  9. Hein, S., Zakhor, A.: Halftone to continuous-tone conversion of error-diffusion coded images. Sigma Delta Modulators 213, 133–154 (1993)

    Article  Google Scholar 

  10. Hou, X., Qiu, G.: Image companding and inverse halftoning using deep convolutional neural networks. arXiv preprint arXiv:1707.00116 (2017)

  11. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  12. Kim, Y.T., Gonzalo, R.A., Nikolai, G.: Inverse halftoning using binary permutation filters. IEEE Trans. Image Process. (TIP) 4(9), 1296–1311 (1995)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1511.06349 (2014)

  14. Kipphan, H.: Handbook of Print Media. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-540-29900-4

    Book  Google Scholar 

  15. Kite, T.D., Niranjan, D.V., Brian, L.E., Alan, C.B.: A high quality, fast inverse halftoning algorithm for error diffused halftones. In: Proceedings of the IEEE International Conference on Image Processing (ICIP) (1998)

    Google Scholar 

  16. Larsson, G., Maire, M., Shakhnarovich, G.: Learning representations for automatic colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 577–593. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_35

    Chapter  Google Scholar 

  17. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  18. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (2017)

    Google Scholar 

  19. Lizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color!: joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. (TOG) 35(4), 110–121 (2016)

    Google Scholar 

  20. Loffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: IEEE International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  21. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  22. Mese, M., Palghat, P.V.: Look-up table (LUT) method for inverse halftoning. IEEE Trans. Image Process. (TIP) 10(10), 1566–1578 (2001)

    Article  Google Scholar 

  23. Mese, M., Vaidyanathan, P.P.: Recent advances in digital halftoning and inverse halftoning methods. IEEE Trans. Circ. Syst. 49(6), 790–806 (2002)

    Article  Google Scholar 

  24. Mese, M., Vaidyanathan, P.P.: Recent advances in digital halftoning and inverse halftoning methods. IEEE Trans. Circ. Syst. I: Fundam. Theory Appl. 49(6), 790–805 (2002)

    Article  Google Scholar 

  25. Mitsa, T., Parker, K.J.: Digital halftoning technique using a blue-noise mask. JOSA A 9(11), 1920–1929 (1992)

    Article  Google Scholar 

  26. Nah, S., Kim, T.H., Lee, K.M.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  27. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  28. Seldowitz, M.A., Allebach, J.P., Sweeney, D.W.: Synthesis of digital holograms by direct binary search. Appl. Opt. 26(14), 2788–2798 (1987)

    Article  Google Scholar 

  29. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  30. Son, C.H.: Inverse halftoning based on sparse representation. Opt. Lett. 37(12), 2352–2354 (2012)

    Article  Google Scholar 

  31. Son, C.H., Choo, H.: Local learned dictionaries optimized to edge orientation for inverse halftoning. IEEE Trans. Image Process. (TIP) 23(6), 2542–2557 (2014)

    Article  MathSciNet  Google Scholar 

  32. Ulichney, R.A.: Dithering with blue noise. In: Proceedings of the IEEE (1988)

    Google Scholar 

  33. Wong, P.W.: Inverse halftoning and kernel estimation for error diffusion. IEEE Trans. Image Process. (TIP) 4(4), 486–498 (1995)

    Article  MathSciNet  Google Scholar 

  34. Xie, S., Tu, Z.: Holistically-nested edge detection. In: IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  35. Xiong, Z., Michael, T.O., Kannan, R.: Inverse halftoning using wavelets. IEEE Trans. Image Process. (TIP) 8(10), 1479–1483 (1999)

    Article  Google Scholar 

  36. Zhang, K., Zuo, W., Chen, Y., Meng, D., Zhang, L.: Beyond a Gaussian denoiser: residual learning of deep cnn for image denoising. IEEE Trans. Image Process. (TIP) 26(7), 3142–3155 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This project is supported by Shenzhen Science and Technology Program (No. JCYJ20160429190300857) and Shenzhen Key Laboratory (No. ZDSYS201605101739178), and the Research Grants Council of the Hong Kong Special Administrative Region, under RGC General Research Fund (Project No. CUHK14201017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Tsin Wong .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, M., Wong, TT. (2019). Deep Inverse Halftoning via Progressively Residual Learning. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics