Abstract
The task of generating natural images from 3D scenes has been a long standing goal in computer graphics. On the other hand, recent developments in deep neural networks allow for trainable models that can produce natural-looking images with little or no knowledge about the scene structure. While the generated images often consist of realistic looking local patterns, the overall structure of the generated images is often inconsistent. In this work we propose a trainable, geometry-aware image generation method that leverages various types of scene information, including geometry and segmentation, to create realistic looking natural images that match the desired scene structure. Our geometrically-consistent image synthesis method is a deep neural network, called Geometry to Image Synthesis (GIS) framework, which retains the advantages of a trainable method, e.g., differentiability and adaptiveness, but, at the same time, makes a step towards the generalizability, control and quality output of modern graphics rendering engines. We utilize the GIS framework to insert vehicles in outdoor driving scenes, as well as to generate novel views of objects from the Linemod dataset. We qualitatively show that our network is able to generalize beyond the training set to novel scene geometries, object shapes and segmentations. Furthermore, we quantitatively show that the GIS framework can be used to synthesize large amounts of training data which proves beneficial for training instance segmentation models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Abu Alhaija, H., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets deep learning for car instance segmentation in urban scenes. In: BMVC (2017)
Abu Alhaija, H., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets computer vision: efficient data generation for urban driving scenes. IJCV 126, 961–972 (2018)
Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: ICCV (2017)
Chen, W., et al.: Synthesizing training images for boosting human 3D pose estimation. In: 3DV (2016)
Cheung, E., Wong, T.K., Bera, A., Manocha, D.: STD-PD: generating synthetic training data for pedestrian detection in unannotated videos. arXiv:1707.09100 (2017)
Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: CVPR (2016)
Denton, E.L., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS (2015)
Dosovitskiy, A., Springenberg, J.T., Tatarchenko, M., Brox, T.: Learning to generate chairs, tables and cars with convolutional networks. PAMI 39(4), 692–705 (2017)
Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: surprisingly easy synthesis for instance detection. In: ICCV (2017)
Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: CVPR (2016)
Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv:1508.06576 (2015)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)
Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)
Guzmán-Rivera, A., Batra, D., Kohli, P.: Multiple choice learning: learning to produce multiple structured outputs. In: NIPS (2012)
Hattori, H., Boddeti, V.N., Kitani, K.M., Kanade, T.: Learning scene-specific pedestrian detectors without real data. In: CVPR (2015)
He, K., Gkioxari, G., Dollr, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2980–2988, October 2017. https://doi.org/10.1109/ICCV.2017.322
Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42
Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? In: ICRA (2017)
Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR (2016)
Mayer, N., et al.: What makes good synthetic training data for learning disparity and optical flow estimation? arXiv:1801.06397 (2018)
McCormac, J., Handa, A., Leutenegger, S., Davison, A.J.: SceneNet RGB-D: can 5M synthetic images beat generic ImageNet pre-training on indoor segmentation? In: ICCV (2017)
Michel, F., et al.: Global hypothesis generation for 6D object pose estimation. CoRR abs/1612.02287 (2016). http://arxiv.org/abs/1612.02287
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)
Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: ICCV (2017)
Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7
Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: CVPR (2017)
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.: The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: CVPR (2016)
Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. In: NIPS, pp. 2018–2028 (2017)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
de Souza, C.R., Gaidon, A., Cabon, Y., Peña, A.M.L.: Procedural generation of videos to train deep action recognition networks. arXiv:1612.00881 (2016)
Tremblay, J., et al.: Training deep networks with synthetic data: bridging the reality gap by domain randomization. arXiv preprint arXiv:1804.06516 (2018)
Tsirikoglou, A., Kronander, J., Wrenninge, M., Unger, J.: Procedural modeling and physically based rendering for synthetic data generation in automotive applications. arXiv:1710.06270 (2017)
Varol, G., et al.: Learning from synthetic humans. In: CVPR (2017)
Veeravasarapu, V.S.R., Rothkopf, C.A., Ramesh, V.: Model-driven simulations for deep convolutional neural networks. arXiv:1605.09582 (2016)
Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. arXiv:1711.11585 (2017)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)
Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 318–335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_20
Xu, W., Li, Y., Lu, C.: Generating instance segmentation annotation by geometry-guided GAN. arXiv:1801.08839 (2018)
Yang, Z., Liu, H., Cai, D.: On the diversity of realistic image synthesis. arXiv:1712.07329 (2017)
Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: CVPR (2017)
Acknowledgments
This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 programme (grant No. 647769) and by the Heidelberg Collaboratory for Image Processing (HCI).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Abu Alhaija, H., Mustikovela, S.K., Geiger, A., Rother, C. (2019). Geometric Image Synthesis. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-20876-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20875-2
Online ISBN: 978-3-030-20876-9
eBook Packages: Computer ScienceComputer Science (R0)