Skip to main content

A Data-Driven Approach for Direct and Global Component Separation from a Single Image

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Included in the following conference series:

Abstract

The radiance captured by camera is often under influence of both direct and global illumination from complex environment. Though separating them is highly desired, existing methods require strict capture restriction such as modulated active light. Here, we propose the first method to infer both components from a single image without any hardware restriction. Our method is a novel generative adversarial network (GAN) based networks which imposes prior physics knowledge to force a physics plausible component separation. We also present the first component separation dataset which comprises of 100 scenes with their direct and global components. In the experiments, our method has achieved satisfactory performance on our own testing set and images in public dataset. Finally, we illustrate an interesting application of editing realistic images through the separated components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achar, S., Nuske, S., Narasimhan, S.: Compensating for motion during direct-global separation. In: IEEE International Conference on Computer Vision (ICCV), pp. 1481–1488, December 2013. https://doi.org/10.1109/ICCV.2013.187

  2. Alvarez-Gila, A., van de Weijer, J., Garrote, E.: Adversarial networks for spatial context-aware spectral image reconstruction from RGB. In: IEEE International Conference on Computer Vision Workshop (ICCVW 2017) (2017)

    Google Scholar 

  3. Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial networks. arXiv preprint arXiv:1703.10717 (2017)

  4. Boyadzhiev, I., Bala, K., Paris, S., Adelson, E.: Band-sifting decomposition for image-based material editing. ACM Trans. Graph. 34(5), 163:1–163:16 (2015)

    Article  Google Scholar 

  5. Debevec, P.: Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography. In: ACM SIGGRAPH 2008 Classes, SIGGRAPH 2008, pp. 32:1–32:10. ACM, New York (2008)

    Google Scholar 

  6. Farid, H., Adelson, E.H.: Separating reflections and lighting using independent components analysis. In: Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), vol. 1, p. 267 (1999)

    Google Scholar 

  7. Finn, C., Goodfellow, I., Levine, S.: Unsupervised learning for physical interaction through video prediction. In: Neural Information Processing Systems (NIPS), pp. 64–72 (2016). https://papers.nips.cc/paper/6161-unsupervised-learning-for-physical-interaction-through-video-prediction

  8. Georgoulis, S., Rematas, K., Ritschel, T., Fritz, M., Tuytelaars, T., Van Gool, L.: What is around the camera? In: The IEEE International Conference on Computer Vision (ICCV), October 2017

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014). http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

  10. Gu, J., Kobayashi, T., Gupta, M., Nayar, S.K.: Multiplexed illumination for scene recovery in the presence of global illumination. In: IEEE International Conference on Computer Vision (ICCV), pp. 1–8, November 2011

    Google Scholar 

  11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  12. Gupta, M., Narasimhan, S., Schechner, Y.: On controlling light transport in poor visibility environments. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8, June 2008. https://doi.org/10.1109/CVPR.2008.4587763

  13. Gupta, M., Agrawal, A., Veeraraghavan, A., Narasimhan, S.G.: A practical approach to 3D scanning in the presence of interreflections, subsurface scattering and defocus. Int. J. Comput. Vis. 102(1–3), 33–55 (2013)

    Article  Google Scholar 

  14. Gupta, M., Tian, Y., Narasimhan, S., Zhang, L.: A combined theory of defocused illumination and global light transport. Int. J. Comput. Vis. 98(2), 146–167 (2012). https://doi.org/10.1007/s11263-011-0500-9

    Article  MathSciNet  Google Scholar 

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv, p. 16 (2016). http://arxiv.org/abs/1611.07004

  16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  17. Karpatne, A., Watkins, W., Read, J., Kumar, V.: Physics-guided neural networks (PGNN): an application in lake temperature modeling (2017). http://arxiv.org/abs/1710.11431

  18. Kubo, H., Jayasuriya, S., Iwaguchi, T., Funatomi, T., Mukaigawa, Y., Narasimhan, S.G.: Acquiring and characterizing plane-to-ray indirect light transport. In: 2018 IEEE International Conference on Computational Photography (ICCP), pp. 1–10. IEEE (2018)

    Google Scholar 

  19. Levin, A., Weiss, Y.: User assisted separation of reflections from a single image using a sparsity prior. IEEE Trans. Pattern Anal. Mach. Intell. 29(9), 1647–1654 (2007)

    Article  Google Scholar 

  20. Li, Y., Brown, M.S.: Exploiting reflection change for automatic reflection removal. In: 2013 IEEE International Conference on Computer Vision, pp. 2432–2439, December 2013

    Google Scholar 

  21. Liang, X., Lee, L., Dai, W., Xing, E.P.: Dual motion GAN for future-flow embedded video prediction. In: Proceedings of the IEEE International Conference on Computer Vision, October 2017, pp. 1762–1770 (2017). https://doi.org/10.1109/ICCV.2017.194

  22. Liu, C., Sharan, L., Adelson, E.H., Rosenholtz, R.: Exploring features in a Bayesian framework for material recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 239–246, June 2010

    Google Scholar 

  23. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2813–2821. IEEE (2017)

    Google Scholar 

  24. Morris, N., Kutulakos, K.: Reconstructing the surface of inhomogeneous transparent scenes by scatter-trace photography. In: IEEE 11th International Conference on Computer Vision (ICCV), pp. 1–8, October 2007. https://doi.org/10.1109/ICCV.2007.4408882

  25. Mukaigawa, Y., Yagi, Y., Raskar, R.: Analysis of light transport in scattering media. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 153–160, June 2010. https://doi.org/10.1109/CVPR.2010.5540216

  26. Mukaigawa, Y., Suzuki, K., Yagi, Y.: Analysis of subsurface scattering based on dipole approximation. Inf. Media Technol. 4(4), 951–961 (2009)

    Google Scholar 

  27. Munoz, A., Echevarria, J.I., Seron, F.J., Lopez-Moreno, J., Glencross, M., Gutierrez, D.: BSSRDF estimation from single images. Comput. Graph. Forum 30(2), 455–464 (2011). https://doi.org/10.1111/j.1467-8659.2011.01873.x

    Article  Google Scholar 

  28. Nayar, S.K., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25, 935 (2006). https://doi.org/10.1145/1141911.1141977

    Article  Google Scholar 

  29. Nayar, S., Krishnan, G., Grossberg, M.D., Raskar, R.: Fast separation of direct and global components of a scene using high frequency illumination. ACM Trans. Graph. 25, 935–944 (2006). (also Proceedings of ACM SIGGRAPH)

    Article  Google Scholar 

  30. Nguyen, V., Vicente, T.F.Y., Zhao, M., Hoai, M., Samaras, D., Brook, S.: Shadow detection with conditional generative adversarial networks. In: ICCV 2017, pp. 4510–4518 (2017)

    Google Scholar 

  31. Nie, S., Gu, L., Zheng, Y., Lam, A., Ono, N., Sato, I.: Deeply learned filter response functions for hyperspectral reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4767–4776 (2018)

    Google Scholar 

  32. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. arXiv preprint arXiv:1610.09585 (2016)

  33. Osokin, A., Chessel, A., Salas, R.E.C., Vaggi, F.: GANs for biological image synthesis (2017). http://arxiv.org/abs/1708.04692

  34. O’Toole, M., Mather, J., Kutulakos, K.N.: 3D shape and indirect appearance by structured light transport. IEEE Trans. Pattern Anal. Mach. Intell. 38(7), 1298–1312 (2016)

    Article  Google Scholar 

  35. O’Toole, M., Achar, S., Narasimhan, S.G., Kutulakos, K.N.: Homogeneous codes for energy-efficient illumination and imaging. ACM Trans. Graph. (ToG) 34(4), 35 (2015)

    Google Scholar 

  36. O’Toole, M., Raskar, R., Kutulakos, K.N.: Primal-dual coding to probe light transport. ACM Trans. Graph. 31(4), 39:1–39:11 (2012)

    Google Scholar 

  37. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR, June 2016

    Google Scholar 

  38. Ping-Sing, T., Shah, M.: Shape from shading using linear approximation. Image Vis. Comput. 12(8), 487–498 (1994)

    Article  Google Scholar 

  39. Reddy, D., Ramamoorthi, R., Curless, B.: Frequency-space decomposition and acquisition of light transport under spatially varying illumination. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 596–610. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_43. http://graphics.berkeley.edu/papers/Reddy-FSD-2012-10/

    Chapter  Google Scholar 

  40. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  41. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: NIPS, pp. 1–9 (2016). arXiv:1504.01391, http://arxiv.org/abs/1606.03498

  42. Stewart, R., Ermon, S.: Label-free supervision of neural networks with physics and domain knowledge, vol. 1, no. 1 (2016). http://arxiv.org/abs/1609.05566

  43. Subpa-asa, A., Fu, Y., Zheng, Y., Amano, T., Sato, I.: Direct and global component separation from a single image using basis representation. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10113, pp. 99–114. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54187-7_7

    Chapter  Google Scholar 

  44. Sun, S.H., Fan, S.P., Wang, Y.C.F.: Exploiting image structural similarity for single image rain removal. In: 2014 IEEE International Conference on Image Processing, ICIP 2014, pp. 4482–4486 (2014). https://doi.org/10.1109/ICIP.2014.7025909

  45. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  46. Tanaka, K., Mukaigawa, Y., Kubo, H., Matsushita, Y., Yagi, Y.: Recovering inner slices of layered translucent objects by multi-frequency illumination. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 746–757 (2017). https://doi.org/10.1109/TPAMI.2016.2631625

    Article  Google Scholar 

  47. Wan, R., Shi, B., Duan, L.Y., Tan, A.H., Kot, A.C.: Benchmarking single-image reflection removal algorithms. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3942–3950, October 2017. https://doi.org/10.1109/ICCV.2017.423

  48. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861

    Article  Google Scholar 

  49. van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based color constancy. IEEE Trans. Image Process. 16(9), 2207–2214 (2007). https://doi.org/10.1109/TIP.2007.901808

    Article  MathSciNet  Google Scholar 

  50. Wu, D., O’Toole, M., Velten, A., Agrawal, A., Raskar, R.: Decomposing global light transport using time of flight imaging. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 366–373, June 2012

    Google Scholar 

  51. Yang, J., Li, H., Dai, Y., Tan, R.T.: Robust optical flow estimation of double-layer images under transparency or reflection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1410–1419, June 2016. https://doi.org/10.1109/CVPR.2016.157

  52. Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19(9), 2241–2253 (2010)

    Article  MathSciNet  Google Scholar 

  53. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  54. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks (2017). http://arxiv.org/abs/1703.10593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nie, S., Gu, L., Subpa-asa, A., Kacher, I., Nishino, K., Sato, I. (2019). A Data-Driven Approach for Direct and Global Component Separation from a Single Image. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics