Skip to main content

SMC: Single-Stage Multi-location Convolutional Network for Temporal Action Detection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11362))

Included in the following conference series:

  • 2233 Accesses

Abstract

Temporal action detection in untrimmed videos is an important and challenging visual task. State-of-the-art works always adopt a multi-stage pipeline, i.e., a class-agnostic segment proposal followed by a multi-label action classification. This pipeline is computationally slow and hard to optimize as each stage need be trained separately. Moreover, a desirable method should go beyond segment-level localization and make dense predictions with precise boundaries. We introduce a novel detection model in this paper, Single-stage Multi-location Convolutional Network (SMC), which completely eliminates the proposal generation and spatio-temporal feature resampling, and predicts frame-level action locations with class probabilities in a unified end-to-end network. Specifically, we associate a set of multi-scale default locations with each feature map cell in multiple layers, then predict the location offsets to the default locations, as well as action categories. SMC in practice is faster than the existing methods (753 FPS on a Titan X Maxwell GPU) and achieves state-of-the-art performance on THUMOS’14 and MEXaction2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Caba Heilbron, F., Carlos Niebles, J., Ghanem, B.: Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In: CVPR (2016)

    Google Scholar 

  2. Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos via multi-stage CNNs. In: CVPR (2016)

    Google Scholar 

  3. Escorcia, V., Caba Heilbron, F., Niebles, J.C., Ghanem, B.: DAPs: deep action proposals for action understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 768–784. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_47

    Chapter  Google Scholar 

  4. Oneata, D., Verbeek, J., Schmid, C.: The LEAR submission at Thumos 2014 (2014)

    Google Scholar 

  5. Yuan, J., Ni, B., Yang, X., Kassim, A.A.: Temporal action localization with pyramid of score distribution features. In: CVPR (2016)

    Google Scholar 

  6. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR (2016)

    Google Scholar 

  7. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR (2017)

    Google Scholar 

  8. Liu, W., et al.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  9. Herath, S., Harandi, M., Porikli, F.: Going deeper into action recognition: a survey. Image Vis. Comput. (2017)

    Google Scholar 

  10. Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. PAMI (2013)

    Google Scholar 

  11. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NIPS (2014)

    Google Scholar 

  12. Yue-Hei Ng, J., Hausknecht, M., Vijayanarasimhan, S., Vinyals, O., Monga, R., Toderici, G.: Beyond short snippets: deep networks for video classification. In: CVPR (2015)

    Google Scholar 

  13. Zhu, Y., Long, Y., Guan, Y., Newsam, S., Shao, L.: Towards universal representation for unseen action recognition. In: CVPR (2018)

    Google Scholar 

  14. Laptev, I.: On space-time interest points. IJCV (2005)

    Google Scholar 

  15. Klaser, A., Marszałek, M., Schmid, C.: A spatio-temporal descriptor based on 3D-gradients. In: BMVC(2008)

    Google Scholar 

  16. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: CVPR (2015)

    Google Scholar 

  17. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  18. Feichtenhofer, C., Pinz, A., Wildes, R.: Spatiotemporal residual networks for video action recognition. In: NIPS (2016)

    Google Scholar 

  19. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2014)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  21. Baccouche, M., Mamalet, F., Wolf, C., Garcia, C., Baskurt, A.: Sequential deep learning for human action recognition. In: Salah, A.A., Lepri, B. (eds.) HBU 2011. LNCS, vol. 7065, pp. 29–39. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25446-8_4

    Chapter  Google Scholar 

  22. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recognition and description. In: CVPR (2015)

    Google Scholar 

  23. Gaidon, A., Harchaoui, Z., Schmid, C.: Actom sequence models for efficient action detection. In: CVPR (2011)

    Google Scholar 

  24. Jain, M., van Gemert, J.C., Snoek, C.G.: What do 15,000 object categories tell us about classifying and localizing actions? In: CVPR (2015)

    Google Scholar 

  25. Oneata, D., Verbeek, J., Schmid, C.: Efficient action localization with approximately normalized fisher vectors. In: CVPR (2014)

    Google Scholar 

  26. Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.F.: CDC: convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos. In: CVPR (2017)

    Google Scholar 

  27. Dai, X., Singh, B., Zhang, G., Davis, L.S., Chen, Y.Q.: Temporal context network for activity localization in videos. In: ICCV (2017)

    Google Scholar 

  28. Gao, J., Yang, Z., Nevatia, R.: Cascaded boundary regression for temporal action detection. In: BMVC (2017)

    Google Scholar 

  29. Gao, J., Yang, Z., Sun, C., Chen, K., Nevatia, R.: TURN TAP: temporal unit regression network for temporal action proposals. In: ICCV (2017)

    Google Scholar 

  30. Yeung, S., Russakovsky, O., Jin, N., Andriluka, M., Mori, G., Fei-Fei, L.: Every moment counts: dense detailed labeling of actions in complex videos. IJCV (2015)

    Google Scholar 

  31. Yeung, S., Russakovsky, O., Mori, G., Fei-Fei, L.: End-to-end learning of action detection from frame glimpses in videos. In: CVPR (2016)

    Google Scholar 

  32. Singh, B., Marks, T.K., Jones, M., Tuzel, O., Shao, M.: A multi-stream bi-directional recurrent neural network for fine-grained action detection. In: CVPR (2016)

    Google Scholar 

  33. Xu, H., Das, A., Saenko, K.: R-C3D: region convolutional 3D network for temporal activity detection. In: ICCV (2017)

    Google Scholar 

  34. Zhu, Y., Newsam, S.: Efficient action detection in untrimmed videos via multi-task learning. In: WACV (2017)

    Google Scholar 

  35. Lin, T., Zhao, X., Shou, Z.: Single shot temporal action detection. In: ACMMM (2017)

    Google Scholar 

  36. Buch, S., Escorcia, V., Ghanem, B., Fei-Fei, L., Niebles, J.C.: End-to-end, single-stream temporal action detection in untrimmed videos. In: BMVC (2017)

    Google Scholar 

  37. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR (2014)

    Google Scholar 

  38. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  39. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  40. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: ICAIS (2011)

    Google Scholar 

  41. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Object detectors emerge in deep scene CNNs. In: ICLR (2015)

    Google Scholar 

  42. Jiang, Y., et al.: THUMOS challenge: action recognition with a large number of classes (2014). http://crcv.ucf.edu/THUMOS14/

  43. MEXaction2 (2015). http://mexculture.cnam.fr/xwiki/bin/view/Datasets/Mex+action+dataset

  44. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) COMPSTAT 2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

    Chapter  Google Scholar 

  45. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. CRCV-TR-12-01 (2012)

    Google Scholar 

  46. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: ACMMM (2014)

    Google Scholar 

  47. Wang, L., Qiao, Y., Tang, X.: Action recognition and detection by combining motion and appearance features. In: THUMOS14 Action Recognition Challenge (2014)

    Google Scholar 

  48. Buch, S., Escorcia, V., Shen, C., Ghanem, B., Niebles, J.C.: SST: single-stream temporal action proposals. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant 61673362 and 61836008, Youth Innovation Promotion Association CAS (2017496), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Z., Wang, Z., Zhao, Y., Tian, Y. (2019). SMC: Single-Stage Multi-location Convolutional Network for Temporal Action Detection. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics