Skip to main content

Geometry Meets Semantics for Semi-supervised Monocular Depth Estimation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11363))

Included in the following conference series:

Abstract

Depth estimation from a single image represents a very exciting challenge in computer vision. While other image-based depth sensing techniques leverage on the geometry between different viewpoints (e.g., stereo or structure from motion), the lack of these cues within a single image renders ill-posed the monocular depth estimation task. For inference, state-of-the-art encoder-decoder architectures for monocular depth estimation rely on effective feature representations learned at training time. For unsupervised training of these models, geometry has been effectively exploited by suitable images warping losses computed from views acquired by a stereo rig or a moving camera. In this paper, we make a further step forward showing that learning semantic information from images enables to improve effectively monocular depth estimation as well. In particular, by leveraging on semantically labeled images together with unsupervised signals gained by geometry through an image warping loss, we propose a deep learning approach aimed at joint semantic segmentation and depth estimation. Our overall learning framework is semi-supervised, as we deploy groundtruth data only in the semantic domain. At training time, our network learns a common feature representation for both tasks and a novel cross-task loss function is proposed. The experimental findings show how, jointly tackling depth prediction and semantic segmentation, allows to improve depth estimation accuracy. In particular, on the KITTI dataset our network outperforms state-of-the-art methods for monocular depth estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Source code and trained models are available at https://github.com/CVLAB-Unibo/Semantic-Mono-Depth.

  2. 2.

    The testing samples, belonging to the KITTI 2015 dataset, are: 000001, 000003, 000004, 000019, 000032, 000033, 000035, 000038, 000039, 000042, 000048, 000064, 000067, 000072, 000087, 000089, 000093, 000095, 000105, 000106, 000111, 000116, 000119, 000123, 000125, 000127, 000128, 000129, 000134, 000138, 000150, 000160, 000161, 000167, 000174, 000175, 000178, 000184, 000185 and 000193.

References

  1. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR (2017)

    Google Scholar 

  2. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: CVPR, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  3. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  4. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR, vol. 2, p. 7 (2017)

    Google Scholar 

  5. Zamir, A.R., Sax, A., Shen, W., Guibas, L., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3712–3722 (2018)

    Google Scholar 

  6. Alhaija, H.A., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets deep learning for car instance segmentation in urban scenes. In: BMVC (2017)

    Google Scholar 

  7. Liu, F., Shen, C., Lin, G., Reid, I.: Learning depth from single monocular images using deep convolutional neural fields. TPAMI 38, 2024–2039 (2016)

    Article  Google Scholar 

  8. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, pp. 2366–2374 (2014)

    Google Scholar 

  9. Wang, X., Fouhey, D., Gupta, A.: Designing deep networks for surface normal estimation. In: CVPR, pp. 539–547 (2015)

    Google Scholar 

  10. Cao, Y., Wu, Z., Shen, C.: Estimating depth from monocular images as classification using deep fully convolutional residual networks. IEEE Trans. Circuits Syst. Video Technol. 28, 3174–3182 (2017)

    Article  Google Scholar 

  11. Saxena, A., Sun, M., Ng, A.Y.: Make3D: learning 3D scene structure from a single still image. TPAMI 31, 824–840 (2009)

    Article  Google Scholar 

  12. Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 3DV. (2017)

    Google Scholar 

  13. Garg, R., B.G., V.K., Carneiro, G., Reid, I.: Unsupervised CNN for single view depth estimation: geometry to the rescue. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 740–756. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_45

    Chapter  Google Scholar 

  14. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

    Google Scholar 

  15. Poggi, M., Aleotti, F., Tosi, F., Mattoccia, S.: Towards real-time unsupervised monocular depth estimation on CPU. In: IEEE/JRS Conference on Intelligent Robots and Systems (IROS) (2018)

    Google Scholar 

  16. Poggi, M., Tosi, F., Mattoccia, S.: Learning monocular depth estimation with unsupervised trinocular assumptions. In: 6th International Conference on 3D Vision (3DV) (2018)

    Google Scholar 

  17. Aleotti, F., Tosi, F., Poggi, M., Mattoccia, S.: Generative adversarial networks for unsupervised monocular depth prediction. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 337–354. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_20

    Chapter  Google Scholar 

  18. Kuznietsov, Y., Stuckler, J., Leibe, B.: Semi-supervised deep learning for monocular depth map prediction. In: CVPR (2017)

    Google Scholar 

  19. Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  20. Wang, C., Buenaposada, J.M., Zhu, R., Lucey, S.: Learning depth from monocular videos using direct methods. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  21. Yin, Z., Shi, J.: GeoNet: unsupervised learning of dense depth, optical flow and camera pose. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  22. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: CVPR, pp. 1–8. IEEE (2008)

    Google Scholar 

  23. Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. In: ICCV, pp. 670–677. IEEE (2009)

    Google Scholar 

  24. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  25. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: ICCV, pp. 2650–2658 (2015)

    Google Scholar 

  26. Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: scale-aware semantic image segmentation. In: CVPR, pp. 3640–3649 (2016)

    Google Scholar 

  27. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40, 834–848 (2018)

    Article  Google Scholar 

  28. Liang-Chieh, C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)

    Google Scholar 

  29. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. TPAMI 39, 2481–2495 (2017)

    Article  Google Scholar 

  30. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  31. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks with identity mappings for high-resolution semantic segmentation. In: CVPR (2017)

    Google Scholar 

  32. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: ICCV, pp. 1529–1537 (2015)

    Google Scholar 

  33. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890 (2017)

    Google Scholar 

  34. Dai, J., et al.: Deformable convolutional networks. CoRR, abs/1703.06211 1, 3 (2017)

    Google Scholar 

  35. Wang, P., et al.: Understanding convolution for semantic segmentation. In: WACV (2018)

    Google Scholar 

  36. Ladicky, L., Shi, J., Pollefeys, M.: Pulling things out of perspective. In: CVPR, pp. 89–96 (2014)

    Google Scholar 

  37. Mousavian, A., Pirsiavash, H., Košecká, J.: Joint semantic segmentation and depth estimation with deep convolutional networks. In: 3DV, pp. 611–619. IEEE (2016)

    Google Scholar 

  38. Wang, P., Shen, X., Lin, Z., Cohen, S., Price, B., Yuille, A.L.: Towards unified depth and semantic prediction from a single image. In: CVPR, pp. 2800–2809 (2015)

    Google Scholar 

  39. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics (2018)

    Google Scholar 

  40. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 3DV, pp. 239–248 (2016)

    Google Scholar 

  41. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR, pp. 3213–3223 (2016)

    Google Scholar 

  42. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2015)

    Google Scholar 

  43. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  44. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Article  Google Scholar 

  45. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. (IJRR) 32, 1231–1237 (2013)

    Article  Google Scholar 

  46. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Download references

Acknowledgments

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X GPU used for this research

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierluigi Zama Ramirez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zama Ramirez, P., Poggi, M., Tosi, F., Mattoccia, S., Di Stefano, L. (2019). Geometry Meets Semantics for Semi-supervised Monocular Depth Estimation. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics