Abstract
While inverse tone mapping (ITM) was frequently used for graphics rendering in the high dynamic range (HDR) space, the advent of HDR TVs and the consequent need for HDR multimedia contents open up new horizons for the consumption of ultra-high quality video contents. Unfortunately, previous methods are not appropriate for HDR TVs, and their inverse-tone-mapped results are not visually pleasing with noise amplification or lack of details. In this paper, we first present the ITM problem for HDR TVs and propose a CNN-based architecture, called ITM-CNN, which restores lost details and local contrast with its training strategy for enhancing the performance based on image decomposition using the guided filter. We demonstrate the benefits of decomposing the image by experimenting with various architectures and also compare the performance for different training strategies. Our ITM-CNN is a powerful means to solve the lack of HDR video contents with legacy LDR videos.
This work was supported by Institute for Information & communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No. 2017-0-00419, Intelligent High Realistic Visual Processing for Smart Broadcasting Media).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Available at http://madvr.com/.
- 2.
Available at https://mpc-hc.org/.
References
Aurich, V., Weule, J.: Non-linear Gaussian filters performing edge preserving diffusion. In: Sagerer, G., Posch, S., Kummert, F. (eds.) Mustererkennung 1995. INFORMAT, pp. 538–545. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-79980-8_63
Banterle, F., Ledda, P., Debattista, K., Chalmers, A.: Inverse tone mapping. In: Proceedings of the 4th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, pp. 349–356. ACM (2006)
Banterle, F., Ledda, P., Debattista, K., Chalmers, A., Bloj, M.: A framework for inverse tone mapping. Vis. Comput. 23(7), 467–478 (2007)
Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13
Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)
Eilertsen, G., Kronander, J., Denes, G., Mantiuk, R.K., Unger, J.: HDR image reconstruction from a single exposure using deep CNNs. ACM Trans. Graph. 36(6), 178 (2017)
Endo, Y., Kanamori, Y., Mitani, J.: Deep reverse tone mapping. ACM Trans. Graph. 36(6), 177 (2017)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323 (2011)
He, K., Sun, J., Tang, X.: Guided image filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 1–14. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_1
He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)
Huo, Y., Yang, F., Dong, L., Brost, V.: Physiological inverse tone mapping based on retina response. Vis. Comput. 30(5), 507–517 (2014)
ITU-R: Parameter values for the HDTV standards for production and international programme exchange. ITU-R Rec. BT.709-5 (2002). http://www.itu.int/rec/R-REC-BT.709
ITU-R: Reference electro-optical transfer function for flat panel displays used in HDTV studio production. ITU-R Rec. BT.1886 (2011)
ITU-R: Parameter values for ultra-high definition television systems for production and international programme exchange. Document ITU-R Rec. BT.2020-1 (2014). http://www.itu.int/rec/R-REC-BT.2020
ITU-R: Image parameter values for high dynamic range television systems for use in production and international programme exchange. ITU-R Rec. BT.2100-0 (2016). http://www.itu.int/rec/R-REC-BT.2100
Kalantari, N.K., Ramamoorthi, R.: Deep high dynamic range imaging of dynamic scenes. ACM Trans. Graph. 36(4), 144 (2017)
Kovaleski, R.P., Oliveira, M.M.: High-quality reverse tone mapping for a wide range of exposures. In: 2014 27th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 49–56. IEEE (2014)
Kovaleski, R.P., Oliveira, M.M.: High-quality brightness enhancement functions for real-time reverse tone mapping. Vis. Comput. 25(5–7), 539–547 (2009)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph. 30(4), 40 (2011)
Masia, B., Agustin, S., Fleming, R.W., Sorkine, O., Gutierrez, D.: Evaluation of reverse tone mapping through varying exposure conditions. ACM Trans. Graph. 28(5), 160 (2009)
Masia, B., Serrano, A., Gutierrez, D.: Dynamic range expansion based on image statistics. Multimed. Tools Appl. 76(1), 631–648 (2017)
Meylan, L., Daly, S., Süsstrunk, S.: The reproduction of specular highlights on high dynamic range displays. In: Color and Imaging Conference, vol. 1, pp. 333–338. Society for Imaging Science and Technology (2006)
Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. 21(3), 267–276 (2002)
Rempel, A.G., et al.: Ldr2Hdr: on-the-fly reverse tone mapping of legacy video and photographs. In: ACM Transactions on Graphics, vol. 26, p. 39. ACM (2007)
SMPTE: High dynamic range electro-optical transfer function of mastering reference displays. SMPTE ST2084:2014 (2014)
Vedaldi, A., Lenc, K.: MatConvNet: convolutional neural networks for MATLAB. In: Proceedings of the 23rd ACM International Conference on Multimedia, pp. 689–692. ACM (2015)
Zhang, J., Lalonde, J.F.: Learning high dynamic range from outdoor panoramas. In: Proceedings of the IEEE International Conference on Computer Vision (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Kim, S.Y., Kim, DE., Kim, M. (2019). ITM-CNN: Learning the Inverse Tone Mapping from Low Dynamic Range Video to High Dynamic Range Displays Using Convolutional Neural Networks. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_25
Download citation
DOI: https://doi.org/10.1007/978-3-030-20893-6_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20892-9
Online ISBN: 978-3-030-20893-6
eBook Packages: Computer ScienceComputer Science (R0)