Skip to main content

On Proper Designing of Deep Structures for Image Classification

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Abstract

In this paper, we present several approaches to configuration of deep convolutional neural networks for image classification. A common problem when creating deep structures is their proper designing and configuration. This paper shows the learning of the baseline model for image classification and its variations with different structures based on the baseline model. Each of them has different configurations related to downsampling, pooling and filters dilatation. The paper is intended as a guideline for proper designing of deep structures based on experiences resulting from the modifications of deep models configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdelbari, H., Shafi, K.: Learning structures of conceptual models from observed dynamics using evolutionary echo state networks. J. Artif. Intell. Soft Comput. Res. 8(2), 133–154 (2018). https://doi.org/10.1515/jaiscr-2018-0010

    Article  Google Scholar 

  2. Barnes, Z., Cipollone, F., Romero, T.: Techniques for image classification on tiny-imagenet

    Google Scholar 

  3. Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)

    Article  Google Scholar 

  4. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier, Y., Saporta, G. (eds.) Proceedings of COMPSTAT’2010, pp. 177–186. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

    Chapter  Google Scholar 

  5. Chan, T.H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: PCANet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24(12), 5017–5032 (2015)

    Article  MathSciNet  Google Scholar 

  6. Chang, O., Constante, P., Gordon, A., Singana, M.: A novel deep neural network that uses space-time features for tracking and recognizing a moving object. J. Artif. Intell. Soft Comput. Res. 7(2), 125–136 (2017)

    Article  Google Scholar 

  7. Dawar, D., Ludwig, S.A.: Effect of strategy adaptation on differential evolution in presence and absence of parameter adaptation: an investigation. J. Artif. Intell. Soft Comput. Res. 8(3), 211–235 (2018). https://doi.org/10.1515/jaiscr-2018-0014

    Article  Google Scholar 

  8. Deng, F., Pu, S., Chen, X., Shi, Y., Yuan, T., Pu, S.: Hyperspectral image classification with capsule network using limited training samples. Sensors 18(9), 3153 (2018)

    Article  Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  10. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  11. Hansen, L.: Tiny imagenet challenge submission. CS 231N (2015)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Marmanis, D., Datcu, M., Esch, T., Stilla, U.: Deep learning earth observation classification using imagenet pretrained networks. IEEE Geosci. Remote Sens. Lett. 13(1), 105–109 (2016)

    Article  Google Scholar 

  16. Mou, L., Ghamisi, P., Zhu, X.X.: Deep recurrent neural networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3639–3655 (2017)

    Article  Google Scholar 

  17. Nesterov, Y.: A method for unconstrained convex minimization problem with the rate of convergence o (1/k\(^2\)). In: Doklady AN USSR, vol. 269, pp. 543–547 (1983)

    Google Scholar 

  18. Ng, A.Y.: Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In: Proceedings of the Twenty-First International Conference on Machine Learning, p. 78. ACM (2004)

    Google Scholar 

  19. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Villmann, T., Bohnsack, A., Kaden, M.: Can learning vector quantization be an alternative to SVM and deep learning? - Recent trends and advanced variants of learning vector quantization for classification learning. J. Artif. Intell. Soft Comput. Res. 7(1), 65–81 (2017). https://doi.org/10.1515/jaiscr-2017-0005

    Article  Google Scholar 

  22. Wang, F., et al.: Residual attention network for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3156–3164 (2017)

    Google Scholar 

  23. Yu, H.: Deep convolutional neural networks for tiny imagenet classification

    Google Scholar 

  24. Zhang, C., et al.: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogramm. Remote Sens. 140, 133–144 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the Polish National Science Center under Grant 2017/27/B/ST6/02852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Woldan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Woldan, P., Staszewski, P., Rutkowski, L., Grzanek, K. (2019). On Proper Designing of Deep Structures for Image Classification. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11508. Springer, Cham. https://doi.org/10.1007/978-3-030-20912-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20912-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20911-7

  • Online ISBN: 978-3-030-20912-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics