Skip to main content

The Method of Predicting Changes of a Dynamic Signature Using Possibilities of Population-Based Algorithms

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Abstract

Verification of a signature on the basis of its dynamics is an important issue of biometrics. This kind signature is called the dynamic signature. It can be represented, among others, by the set of features determined on the basis of time characteristics: pen velocity, pen pressure on the surface of a graphics tablet, etc. Values of the features can change over time, individually for each signer. Our previous research was related to the prediction of these changes to increase the effectiveness of a signature verification process. This approach was effective. The main purpose of this work is to compare the effectiveness of the methods for a prediction of signature features changes using selected population-based algorithms. They are used for learning of the fuzzy system used for prediction. Tests of the proposed approach were performed using ATVS-SLT DB database of the dynamic signatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atashpaz-Gargari, E., Lucas, C.: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 7, pp. 4661–4666 (2007)

    Google Scholar 

  2. Beg, I., Rashid, T.: Modelling uncertainties in multi-criteria decision making using distance measure and TOPSIS for hesitant fuzzy sets. J. Artif. Intell. Soft Comput. Res. 7, 103–109 (2017)

    Article  Google Scholar 

  3. Bilski, J., Smoląg, J., Galushkin, A.I.: The parallel approach to the conjugate gradient learning algorithm for the feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 12–21. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_2

    Chapter  Google Scholar 

  4. Bilski, J., Smola̧g, J.: Parallel architectures for learning the RTRN and Elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)

    Article  Google Scholar 

  5. Cpałka, K.: Design of Interpretable Fuzzy Systems. SCI, vol. 684. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52881-6

    Book  Google Scholar 

  6. Cpałka, K., Rutkowski, L.: A new method for designing and reduction of neuro-fuzzy systems. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2006), Vancouver, BC, Canada, pp. 8510–8516 (2006)

    Google Scholar 

  7. Cpałka, K., Rutkowski, L.: Evolutionary learning of flexible neuro-fuzzy systems. In: Proceedings of the 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2008), Hong Kong June 1–6, CD, pp. 969–975 (2008)

    Google Scholar 

  8. Cpałka, K., Rutkowski, L.: Flexible Takagi-sugeno fuzzy systems. In: Proceedings of the International Joint Conference on Neural Networks 2005, Montreal, pp. 1764–1769 (2005)

    Google Scholar 

  9. Doroz, R., Kudlacik, P., Porwik, P.: Online signature verification modeled by stability oriented reference signatures. Inf. Sci. 460–461, 151–171 (2018)

    Article  Google Scholar 

  10. Dziwiński, P., Avedyan, E.D.: A new method of the intelligent modeling of the nonlinear dynamic objects with fuzzy detection of the operating points. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 293–305. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_25

    Chapter  Google Scholar 

  11. Dziwiński, P., Avedyan, E.D.: A new approach for using the fuzzy decision trees for the detection of the significant operating points in the nonlinear modeling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 279–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_24

    Chapter  Google Scholar 

  12. Dziwiński, P., Bartczuk, Ł., Tingwen, H.: A method for non-linear modelling based on the capabilities of PSO and GA algorithms. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 221–232. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_21

    Chapter  Google Scholar 

  13. Dziwiński, P., Bartczuk, Ł., Przybyszewski, K.: A population based algorithm and fuzzy decision trees for nonlinear modeling. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10842, pp. 516–531. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91262-2_46

    Chapter  Google Scholar 

  14. Galbally, J., Martinez-Diaz, M., Fierez, J.: Aging in biometrics: an experimental analysis on on-line signature. PLoS ONE 8(7), e69897 (2013)

    Article  Google Scholar 

  15. Galbally, J., Diaz-Cabrera, M., Ferrer, M.A., Gomez-Barrero, M., Morales, A., Fierrez, J.: On-line signature recognition through the combination of real dynamic data and synthetically generated static data. Pattern Recogn. 48, 2921–2934 (2015)

    Article  Google Scholar 

  16. Linden, J., Marquis, R., Bozza, S., Taroni, F.: Dynamic signatures: a review of dynamic feature variation and forensic methodology. Forensic Sci. Int. 291, 216–229 (2018)

    Article  Google Scholar 

  17. Łapa, K., Cpałka, K., Wang, L.: New method for design of fuzzy systems for nonlinear modelling using different criteria of interpretability. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 217–232. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_20

    Chapter  Google Scholar 

  18. McAlinn, K., West, M.: Dynamic Bayesian predictive synthesis in time series forecasting. J. Econometrics 210, 155–169 (2018)

    Article  MathSciNet  Google Scholar 

  19. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  20. Nguyen, L., Novák, V.: Forecasting seasonal time series based on fuzzy techniques. Fuzzy Sets Syst. 361, 114–129 (2019)

    Article  MathSciNet  Google Scholar 

  21. Osaba, E., Diaz, F., Onieva, E.: Golden ball: a novel meta-heuristic to solve combinatorial optimization problems based on soccer concepts. Appl. Intell. 41, 145–166 (2014)

    Article  Google Scholar 

  22. Prasad, M., Liu, Y.T., Li, D.L., Lin, C.T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7, 33–46 (2017)

    Article  Google Scholar 

  23. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. NCS. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

    Book  MATH  Google Scholar 

  24. Riid, A., Preden, J.S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7, 137–147 (2017)

    Article  Google Scholar 

  25. Rutkowski, L.: Computational Intelligence. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-76288-1

    Book  MATH  Google Scholar 

  26. Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), Orchid Country Club, Singapore, 18–22 November, CD (2002)

    Google Scholar 

  27. Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, 26–29 July, vol. 2, pp. 1031–1036 (2004)

    Google Scholar 

  28. Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R., Rutkowski, L.: A content-based recommendation system using neuro-fuzzy approach. FUZZ-IEEE 2018, 1–8 (2018)

    Google Scholar 

  29. Rutkowski, T., Romanowski, J., Woldan, P., Staszewski, P., Nielek, R.: Towards interpretability of the movie recommender based on a neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10842, pp. 752–762. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91262-2_66

    Chapter  Google Scholar 

  30. Xia, X., Chen, Z., Luan, F., Song, X.: Signature alignment based on GMM for on-line signature verification. Pattern Recogn. 65, 188–196 (2017)

    Article  Google Scholar 

  31. Yang, S., Sato, Y.: Swarm intelligence algorithm based on competitive predators with dynamic virtual teams. J. Artif. Intell. Soft Comput. Res. 7, 87–101 (2017)

    Article  Google Scholar 

  32. Yin, Y., Shang, P.: Forecasting traffic time series with multivariate predicting method. Appl. Math. Comput. 291, 266–278 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification using selected discretization points groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013. LNCS (LNAI), vol. 7894, pp. 493–502. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38658-9_44

    Chapter  Google Scholar 

  34. Zalasiński, M., Cpałka, K., Hayashi, Y.: New method for dynamic signature verification based on global features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8468, pp. 231–245. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07176-3_21

    Chapter  Google Scholar 

  35. Zalasiński, M., Łapa, K., Cpałka, K.: Prediction of values of the dynamic signature features. Expert Syst. Appl. 104, 86–96 (2018)

    Article  Google Scholar 

  36. Zalasiński, M., Łapa, K., Cpałka, K., Saito, T.: A method for changes prediction of the dynamic signature global features over time. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10245, pp. 761–772. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59063-9_68

    Chapter  Google Scholar 

  37. Zhao, Y., Liu, Q.: A continuous-time distributed algorithm for solving a class of decomposable nonconvex quadratic programming. J. Artif. Intell. Soft Comput. Res. 8, 283–291 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Zalasiński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zalasiński, M., Łapa, K., Cpałka, K., Marchlewska, A. (2019). The Method of Predicting Changes of a Dynamic Signature Using Possibilities of Population-Based Algorithms. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11508. Springer, Cham. https://doi.org/10.1007/978-3-030-20912-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20912-4_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20911-7

  • Online ISBN: 978-3-030-20912-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics