Skip to main content

Squirrel-Cage Induction Motor Malfunction Detection Using Computational Intelligence Methods

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Abstract

The squirrel-cage induction motors (commonly called just electric motors) are widely used in electromechanical devices. They usually act as a source of mechanical power for different types of industrial machines. There is a natural life cycle of such electric motors ending in malfunction caused by damage of particular electric or mechanical parts. Sudden and unforeseen engine failure may turn out to be a heavy cost for the company. Early detection of motor damage can minimize repair costs. In this work a machine-learning based methodology for early motor malfunction detection is presented. A test stand with a three-phase induction motor that can simulate various types of stator winding short-circuit faults under load controlled by a DC generator was build. This stand was equipped with multiple sensors for continuous monitoring. Readings from sensors were collected for different loads and types of damage. Multiple methods of preprocessing and classification were tested. Sensors types are evaluated for accuracy of malfunction recognition based on the results of computational experiments. The 5-fold stratified cross-validation was used for evaluation of preprocessing steps and classifiers. The best results were achieved for neutral voltage, axial flux, and torque sensors. Acquisition time of 0.16 s is sufficient for accurate classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simple intuitive language for experiment modeling. http://silem.iti.pk.edu.pl, http://silem.iti.pk.edu.pl/

  2. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992). https://doi.org/10.1080/00031305.1992.10475879

    Article  MathSciNet  Google Scholar 

  3. Bergland, G.D.: A guided tour of the fast fourier transform. IEEE Spectr. 6(7), 41–52 (1969). https://doi.org/10.1109/MSPEC.1969.5213896

    Article  Google Scholar 

  4. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  5. Fiippetti, F., Vas, P.: Recent developments of induction motor drives fault diagnosis using AI techniques. In: IECON 1998, Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.98CH36200), vol. 4, pp. 1966–1973, August 1998. https://doi.org/10.1109/IECON.1998.724019

  6. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

    Article  MathSciNet  Google Scholar 

  7. Gyftakis, K.N., Spyropoulos, D.V., Kappatou, J.C., Mitronikas, E.D.: A novel approach for broken bar fault diagnosis in induction motors through torque monitoring. IEEE Trans. Energy Convers. 28(2), 267–277 (2013). https://doi.org/10.1109/TEC.2013.2240683

    Article  Google Scholar 

  8. Hinton, G.E.: Connectionist learning procedures. Artif. Intell. 40(1–3), 185–234 (1989). https://doi.org/10.1016/0004-3702(89)90049-0

    Article  Google Scholar 

  9. Ho, S.L., Lau, K.M.: Detection of faults in induction motors using artificial neural networks. In: 1995 Seventh International Conference on Electrical Machines and Drives (Conf. Publ. No. 412), pp. 176–181, September 1995. https://doi.org/10.1049/cp:19950858

  10. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning: With Applications in R. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7138-7

    Book  MATH  Google Scholar 

  11. Jokic, S., Cincar, N., Novakovic, B.: The analysis of vibration measurement and current signature in motor drive faults detection. In: 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH), pp. 1–6, March 2018. https://doi.org/10.1109/INFOTEH.2018.8345531

  12. Krzanowski, W.J. (ed.): Principles of Multivariate Analysis: A User’s Perspective. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  13. Lakehal, A., Ramdane, A.: Fault prediction of induction motor using Bayesian network model. In: 2017 International Conference on Electrical and Information Technologies (ICEIT), pp. 1–5, November 2017. https://doi.org/10.1109/EITech.2017.8255309

  14. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, New York (2008)

    Book  Google Scholar 

  15. Martins, J.F., Pires, V.F., Pires, A.J.: Unsupervised neural-network-based algorithm for an on-line diagnosis of three-phase induction motor stator fault. IEEE Trans. Ind. Electron. 54(1), 259–264 (2007). https://doi.org/10.1109/TIE.2006.888790

    Article  Google Scholar 

  16. Ostojic, P., Banerjee, A., Patel, D.C., Basu, W., Ali, S.: Advanced motor monitoring and diagnostics. IEEE Trans. Ind. Appl. 50(5), 3120–3127 (2014). https://doi.org/10.1109/TIA.2014.2303252

    Article  Google Scholar 

  17. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Perez-Ramirez, C.A., Rodriguez, M.V., Dominguez-Gonzalez, A., Amezquita-Sanchez, J.P., Camarena-Martinez, D., Troncoso, R.J.R.: Homogeneity-based approach for bearing fault detection in induction motors by means of vibrations. In: 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), pp. 1–5, November 2017. https://doi.org/10.1109/ROPEC.2017.8261624

  19. Plawiak, P., Rzecki, K.: Approximation of phenol concentration using computational intelligence methods based on signals from the metal-oxide sensor array. IEEE Sens. J. 15(3), 1770–1783 (2015). https://doi.org/10.1109/JSEN.2014.2366432

    Article  Google Scholar 

  20. Plawiak, P., Sosnicki, T., Niedzwiecki, M., Tabor, Z., Rzecki, K.: Hand body language gesture recognition based on signals from specialized glove and machine learning algorithms. IEEE Trans. Ind. Inform. PP(99), 1 (2016). https://doi.org/10.1109/TII.2016.2550528

    Article  Google Scholar 

  21. Poyhonen, S., Negrea, M., Arkkio, A., Hyotyniemi, H., Koivo, H.: Fault diagnostics of an electrical machine with multiple support vector classifiers. In: Proceedings of the IEEE International Symposium on Intelligent Control, pp. 373–378, October 2002. https://doi.org/10.1109/ISIC.2002.1157792

  22. Premrudeepreechacharn, S., Utthiyoung, T., Kruepengkul, K., Puongkaew, P.: Induction motor fault detection and diagnosis using supervised and unsupervised neural networks. In: 2002 IEEE International Conference on Industrial Technology, IEEE ICIT 2002, vol. 1, pp. 93–96, December 2002. https://doi.org/10.1109/ICIT.2002.1189869

  23. Rzecki, K., Pławiak, P., Niedźwiecki, M., Sośnicki, T., Leśkow, J., Ciesielski, M.: Person recognition based on touch screen gestures using computational intelligence methods. Inf. Sci. 415–416, 70–84 (2017). https://doi.org/10.1016/j.ins.2017.05.041. http://www.sciencedirect.com/science/article/pii/S002002551730751X

    Article  Google Scholar 

  24. Rzecki, K., et al.: Application of computational intelligence methods for the automated identification of paper-ink samples based on LIBS. Sensors 18(11), 3670 (2018). https://doi.org/10.3390/s18113670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Wójcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rzecki, K., Wójcik, B., Baran, M., Sułowicz, M. (2019). Squirrel-Cage Induction Motor Malfunction Detection Using Computational Intelligence Methods. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11508. Springer, Cham. https://doi.org/10.1007/978-3-030-20912-4_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20912-4_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20911-7

  • Online ISBN: 978-3-030-20912-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics