Skip to main content

Resilient Environmental Monitoring Utilizing a Machine Learning Approach

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11508))

Included in the following conference series:

  • 1765 Accesses

Abstract

A wide range of regulations is established to protect citizens health from the noxious consequences of aerosols, e.g. particulate matter (PM10). To ensure a public information and the compliance to given regulations, a resilient environmental sensor network is necessary. This paper presents a machine learning approach which utilizes low-cost platforms to build a resilient sensor network. In particular, malfunctions are compensated by learning virtual models of various particulate matter sensors. Such virtualized sensors are already utilized in the field of proprioceptive robotics [1] and are comparable to a digital twins definition. Several experiments show the proposed method yields PM10 estimates and forecasts similar to high-performance sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland.

  2. 2.

    www.umweltbundesamt.de/daten/luftbelastung/aktuelle-luftdaten.

  3. 3.

    www.maps.luftdaten.info.

  4. 4.

    www.watterott.com/de/Nova-SDS011-Feinstaub-Sensor.

  5. 5.

    www.foedisch.de/staubmesstechnik/feinstaub.

References

  1. Berger, E.: Behavior-specific proprioception models for robotic force estimation: a machine learning approach, Ph.D. thesis (2018)

    Google Scholar 

  2. Lovett, G.M., et al.: Who needs environmental monitoring? Front. Ecol. Environ. 5(5), 253–260 (2007)

    Article  Google Scholar 

  3. Rohr, A., Wyzga, R.: Attributing health effects to individual particulate matter constituents. Atmos. Environ. 62, 130–152 (2012)

    Article  Google Scholar 

  4. Irwin, A.: Citizen Science: A Study of People, Expertise and Sustainable Development. Routledge, London (2002)

    Book  Google Scholar 

  5. McCrory, G., Veeckman, C., Claeys, L.: Citizen science is in the air – engagement mechanisms from technology-mediated citizen science projects addressing air pollution. In: Kompatsiaris, I., et al. (eds.) INSCI 2017. LNCS, vol. 10673, pp. 28–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70284-1_3

    Chapter  Google Scholar 

  6. Blon, M.: Research regarding PM measurements. The citizen science project luftdaten.info, M.Sc. thesis, University of Esslingen (2018). (In German)

  7. Razzaque, M.A., et al.: Middleware for Internet of Things: a survey. IEEE Internet Things J. 3(1), 70–95 (2016)

    Article  Google Scholar 

  8. Kosmidis, E., Syropoulou, P., Tekes, S., et al.: hackAIR: towards raising awareness about air quality in Europe by developing a collective online platform. ISPRS Int. J. Geo-Inf. 7, 187 (2018)

    Article  Google Scholar 

  9. Schneider, P., Castell, N., Vogt, M., Dauge, F., Lahoz, W., Bartonova, A.: Mapping urban air quality in near real-time using observations from low-cost sensors and model information. Environ. Int. 106, 234–247 (2017)

    Article  Google Scholar 

  10. Castell, N., et al.: Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ. Int. 99, 293–302 (2017)

    Article  Google Scholar 

  11. Lary, D., Alavi, A., Omi, A., Walker, A.: Machine learning in geosciences and remote sensing. Geosci. Front. 7, 3–10 (2016)

    Article  Google Scholar 

  12. Berger, E., Vogt, D., Grehl, S., Jung, B., Amor, H.B.: Estimating perturbations from experience using neural networks and information transfer. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, pp. 176–181 (2016)

    Google Scholar 

  13. Lin, T., Horne, B.G., Tino, P., Giles, C.L.: Learning long-term dependencies in NARX recurrent neural networks. Trans. Neural Network 7, 1329–1338 (1996)

    Article  Google Scholar 

  14. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. In: Neural Computation, pp. 2451–2471 (2000)

    Article  Google Scholar 

  15. Srivastava, R.K., Greff, K., Schmidhuber, J.: Training very deep networks. In: Advances in Neural Information Processing Systems, pp. 2377–2385 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Häberlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Häberlein, D., Kafurke, L., Höfer, S., Franczyk, B., Jung, B., Berger, E. (2019). Resilient Environmental Monitoring Utilizing a Machine Learning Approach. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11508. Springer, Cham. https://doi.org/10.1007/978-3-030-20912-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20912-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20911-7

  • Online ISBN: 978-3-030-20912-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics