Skip to main content

Classification of Transposable Elements by Convolutional Neural Networks

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11509))

Included in the following conference series:

Abstract

The correct classification of transposable elements (TEs) present in the genomes is crucial to understand the real role and the consequences of these elements on the organisms. Here we present a method that classifies TEs by training a CNN to label them in classes, orders and superfamilies. Unlike previous works in the literature, the proposed method does not search for similarities to classify the sequences or use traditional machine learning classifiers. Instead of that, it automatically extracts features and classify the sequences by the CNN itself. We performed an extensive experimental evaluation, analyzing our proposed method under different scenarios. It was capable to classify TEs’ sequences from various datasets in 9 different superfamilies and obtained an accuracy of \(94\%\). We also present comparisons between the proposed method and other state-of-the-art classification tools (PASTEC, REPCLASS and TECLASS), our method presents very promising results, outperforming PASTEC and REPCLASS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://tefam.biochem.vt.edu/tefam/index.php.

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: Proceedings of the Conference on Operating Systems Design and Implementation, pp. 265–283. USENIX Association (2016)

    Google Scholar 

  2. Abrusán, G., Grundmann, N., DeMester, L., Makalowski, W.: TEclass: a tool for automated classification of unknown eukaryotic transposable elements. Bioinformatics 25(10), 1329–1330 (2009). https://doi.org/10.1093/bioinformatics/btp084

    Article  Google Scholar 

  3. Chuong, E.B., Elde, N.C., Feschotte, C.: Regulatory activities of transposable elements: from conflicts to benefits. Nat. Rev. Genet. 18, 71–86 (2016)

    Article  Google Scholar 

  4. Copetti, D., et al.: RiTE database: a resource database for genus-wide rice genomics and evolutionary biology. BMC Genomics 16(1), 538 (2015)

    Article  Google Scholar 

  5. Feschotte, C., Keswani, U., Ranganathan, N., Guibotsy, M.L., Levine, D.: Exploring repetitive DNA landscapes using repclass, a tool that automates the classification of transposable elements in eukaryotic genomes. Genome Bioloyand Evol. 1, 205–220 (2009). https://doi.org/10.1093/gbe/evp023. https://www.ncbi.nlm.nih.gov/pubmed/20333191

    Article  Google Scholar 

  6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)

    Google Scholar 

  7. Hoede, C., et al.: PASTEC: an automatic transposable element classification tool. PLOS ONE 9(5), 1–6 (2014). https://doi.org/10.1371/journal.pone.0091929

    Article  MathSciNet  Google Scholar 

  8. Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Walichiewicz, J.: Repbase update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110(1–4), 462–467 (2005)

    Article  Google Scholar 

  9. Kim, Y.: Convolutional neural networks for sentence classification. CoRR abs/1408.5882 (2014). http://arxiv.org/abs/1408.5882

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, pp. 1–15 (2015)

    Google Scholar 

  11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015). https://doi.org/10.1038/nature14539

    Article  Google Scholar 

  12. Li, S.F., et al.: DPTEdb, an integrative database of transposable elements in dioeciousplants. Database (Oxford) 2016, 1–10 (2016). https://doi.org/10.1093/database/baw078. https://www.ncbi.nlm.nih.gov/pubmed/27173524

    Article  Google Scholar 

  13. Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 45(4), 427–437 (2009). https://doi.org/10.1016/j.ipm.2009.03.002. http://www.sciencedirect.com/science/article/pii/S0306457309000259

    Article  Google Scholar 

  14. Spannagl, M., et al.: PGSB PlantsDB: updates to the database framework for comparative plant genome research. Nucleic Acids Res. 44(D1), D1141–D1147 (2016). https://doi.org/10.1093/nar/gkv1130. https://www.ncbi.nlm.nih.gov/pubmed/26527721

    Article  Google Scholar 

  15. Wicker, T., Matthews, D.E., Keller, B.: TREP: a database for triticeae repetitive elements. Trends Plant Sci. 7(12), 561–562 (2002)

    Article  Google Scholar 

  16. Wicker, T., et al.: A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8, 973–982 (2007). https://doi.org/10.1038/nrg2165

    Article  Google Scholar 

  17. Yi, F., Jia, Z., Xiao, Y., Ma, W., Wang, J.: SPTEdb: a database for transposable elements in salicaceous plants. Database 2018(bay024), 1–8 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr Douglas Silva Domingues and Ms. Daniel Longhi Fernandes Pedro for all the comments in this work. This work has been supported by CNPq (grants \(\#372528/2018\)-0, \(\#431668/2016\)-7, \(\#422811/2016\)-5); CAPES; Araucaria Foundation; SETI; PPGBIOINFO; and UTFPR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murilo H. P. da Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

da Cruz, M.H.P., Saito, P.T.M., Paschoal, A.R., Bugatti, P.H. (2019). Classification of Transposable Elements by Convolutional Neural Networks. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11509. Springer, Cham. https://doi.org/10.1007/978-3-030-20915-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20915-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20914-8

  • Online ISBN: 978-3-030-20915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics