Skip to main content

Determining the Eps Parameter of the DBSCAN Algorithm

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11509))

Included in the following conference series:

Abstract

Clustering is an attractive technique used in many fields and lots of clustering algorithms have been proposed so far. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is one of the most popular algorithms, which has been widely applied in many different applications. This algorithm can discover clusters of arbitrary shapes in large datasets. However, the fundamental issue is the right choice of two input parameters, i.e. radius eps and density threshold MinPts. In this paper, a new method is proposed to determine the value of eps. The suggested approach is based on an analysis of the sorted values of the distance function. The performance of the new approach has been demonstrated for several different datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bilski, J., Smoląg, J.: Parallel architectures for learning the RTRN and Elman dynamic neural networks. IEEE Trans. Parallel Distrib. Syst. 26(9), 2561–2570 (2015)

    Article  Google Scholar 

  2. Bilski, J., Wilamowski, B.M.: Parallel learning of feedforward neural networks without error backpropagation. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNAI, vol. 9692, pp. 57–69. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39378-0_6

    Chapter  Google Scholar 

  3. Bilski, J., Kowalczyk, B., Grzanek, K.: The parallel modification to the Levenberg-Marquardt algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS, vol. 10841, pp. 15–24. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_2

    Chapter  Google Scholar 

  4. Bologna, G., Hayashi, Y.: Characterization of symbolic rules embedded in deep DIMLP networks: a challenge to transparency of deep learning. J. Artif. Intell. Soft Comput. Res. 7(4), 265–286 (2017)

    Article  Google Scholar 

  5. Boonchoo, T., Ao, X., Liu, Y., Zhao, W., He, Q.: Grid-based DBSCAN: indexing and inference. Pattern Recogn. 90, 271–284 (2019)

    Article  Google Scholar 

  6. Bradley, P., Fayyad, U.: Refining initial points for K-Means clustering. In Proceedings of the Fifteenth International Conference on Knowledge Discovery and Data Mining, pp. 9–15. AAAI Press, New York (1998)

    Google Scholar 

  7. Chen, Y., Tang, S., Bouguila, N., Wanga, C., Du, J., Li, H.: A fast clustering algorithm based on pruning unnecessary distance computations in DBSCAN for high-dimensional data. Pattern Recogn. 83, 375–387 (2018)

    Article  Google Scholar 

  8. Darong, H., Peng, W.: Grid-based DBSCAN algorithm with referential parameters. Phys. Proc. 24(Part B), 1166–1170 (2012)

    Article  Google Scholar 

  9. D’Aniello, G., Gaeta, M., Loia, F., Reformat, M., Toti, D.: An environment for collective perception based on fuzzy and semantic approaches. J. Artif. Intell. Soft Comput. Res. 8(3), 191–210 (2018)

    Article  Google Scholar 

  10. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceeding of 2nd International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  11. Fränti, P., Rezaei, M., Zhao, Q.: Centroid index: cluster level similarity measure. Pattern Recogn. 47(9), 3034–3045 (2014)

    Article  Google Scholar 

  12. Gabryel, M.: The bag-of-words method with different types of image features and dictionary analysis. J. Univ. Comput. Sci. 24(4), 357–371 (2018)

    MathSciNet  Google Scholar 

  13. Gabryel, M.: Data analysis algorithm for click fraud recognition. In: Damaševičius, R., Vasiljevienė, G. (eds.) ICIST 2018. CCIS, vol. 920, pp. 437–446. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99972-2_36

    Chapter  Google Scholar 

  14. Gabryel, M., Damaševičius, R., Przybyszewski, K.: Application of the bag-of-words algorithm in classification the quality of sales leads. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS, vol. 10841, pp. 615–622. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_57

    Chapter  Google Scholar 

  15. Hruschka, E.R., de Castro, L.N., Campello, R.J.: Evolutionary algorithms for clustering gene-expression data. In: Fourth IEEE International Conference on Data Mining, ICDM 2004, pp. 403–406. IEEE (2004)

    Google Scholar 

  16. Karami, A., Johansson, R.: Choosing DBSCAN parameters automatically using differential evolution. Int. J. Comput. Appl. 91, 1–11 (2014)

    Google Scholar 

  17. Liu, H., Gegov, A., Cocea, M.: Rule based networks: an efficient and interpretable representation of computational models. J. Artif. Intell. Soft Comput. Res. 7(2), 111–123 (2017)

    Article  Google Scholar 

  18. Luchi, D., Rodrigues, A.L., Varejao, F.M.: Sampling approaches for applying DBSCAN to large datasets. Pattern Recogn. Lett. 117, 90–96 (2019)

    Article  Google Scholar 

  19. Meng, X., van Dyk, D.: The EM algorithm - an old folk-song sung to a fast new tune. J. Roy. Stat. Soc. Ser. B (Methodol.) 59(3), 511–567 (1997)

    Article  MathSciNet  Google Scholar 

  20. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. Comput. J. 26(4), 354–359 (1983)

    Article  Google Scholar 

  21. Patrikainen, A., Meila, M.: Comparing subspace clusterings. IEEE Trans. Knowl. Data Eng. 18(7), 902–916 (2006)

    Article  Google Scholar 

  22. Prasad, M., Liu, Y.-T., Li, D.-L., Lin, C.-T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017)

    Article  Google Scholar 

  23. Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)

    Article  Google Scholar 

  24. Rohlf, F.: Single-link clustering algorithms. In: Krishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics, vol. 2, pp. 267–284 (1982)

    Google Scholar 

  25. Sameh, A.S., Asoke, K.N.: Development of assessment criteria for clustering algorithms. Pattern Anal. Appl. 12(1), 79–98 (2009)

    Article  MathSciNet  Google Scholar 

  26. Serdah, A.M., Ashour, W.M.: Clustering large-scale data based on modified affinity propagation algorithm. J. Artif. Intell. Soft Comput. Res. 6(1), 23–33 (2016). https://doi.org/10.1515/jaiscr-2016-0003

    Article  Google Scholar 

  27. Shah, G.H.: An improved DBSCAN, a density based clustering algorithm with parameter selection for high dimensional data sets. In: Nirma University International Engineering, NUiCONE, pp. 1–6 (2012)

    Google Scholar 

  28. Sheikholeslam, G., Chatterjee, S., Zhang, A.: WaveCluster: a wavelet-based clustering approach for spatial data in very large databases. Int. J. Very Large Data Bases 8(3–4), 289–304 (2000)

    Article  Google Scholar 

  29. Shieh, H.-L.: Robust validity index for a modified subtractive clustering algorithm. Appl. Soft Comput. 22, 47–59 (2014)

    Article  Google Scholar 

  30. Starczewski, A.: A new validity index for crisp clusters. Pattern Anal. Appl. 20(3), 687–700 (2017)

    Article  MathSciNet  Google Scholar 

  31. Starczewski, A., Krzyżak, A.: A modification of the Silhouette index for the improvement of cluster validity assessment. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS, vol. 9693, pp. 114–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39384-1_10

    Chapter  Google Scholar 

  32. Wang, W., Yang, J., Muntz, R.: STING: a statistical information grid approach to spatial data mining. In: Proceedings of the 23rd International Conference on Very Large Data Bases, VLDB 1997, pp. 186–195 (1997)

    Google Scholar 

  33. Viswanath, P., Suresh Babu, V.S.: Rough-DBSCAN: a fast hybrid density based clustering method for large data sets. Pattern Recogn. Lett. 30(16), 1477–1488 (2009)

    Article  Google Scholar 

  34. Zalik, K.R.: An efficient K-Means clustering algorithm. Pattern Recogn. Lett. 29(9), 1385–1391 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Starczewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Starczewski, A., Cader, A. (2019). Determining the Eps Parameter of the DBSCAN Algorithm. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11509. Springer, Cham. https://doi.org/10.1007/978-3-030-20915-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20915-5_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20914-8

  • Online ISBN: 978-3-030-20915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics