Skip to main content

Appropriate Data Density Models in Probabilistic Machine Learning Approaches for Data Analysis

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11509))

Included in the following conference series:

  • 1108 Accesses

Abstract

This paper investigates the mathematically appropriate treatment of data density estimators in machine learning approaches, if these estimators rely on data dissimilarity density models. We show exemplarily for two well-known machine learning approaches for classification and data visualization that this dependence is apparently analyzing the respective mathematical models. We show by numerical experiments that data sets generate different data dissimilarity densities depending on the dissimilarity measure in use. Thus an appropriate choice in machine learning models is mandatory to process the data consistently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A respective approach is the Grassberger-Procaccia-method estimating the so-called correlation dimension as an approximation for the Hausdorff-dimension [28,29,30].

  2. 2.

    The Tecator data set is available at http://lib.stat.cmu.edu/datasets/tecator.

  3. 3.

    The PIMA data set is available at http://www.ics.edu/mlearn/MLRepository.html.

References

  1. Sachs, L.: Angewandte Statistik, 7th edn. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-540-32161-3

    Book  MATH  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  3. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New York (1973)

    Google Scholar 

  4. Haykin, S.: Neural Networks. A Comprehensive Foundation. Macmillan, New York (1994)

    MATH  Google Scholar 

  5. Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Comput. 15, 1589–1604 (2003)

    Article  Google Scholar 

  6. Torkkola, K.: Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res. 3, 1415–1438 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Principe, J.C.: Information Theoretic Learning. Springer, Heidelberg (2010). https://doi.org/10.1007/978-1-4419-1570-2

    Book  MATH  Google Scholar 

  8. Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: the generative topographic mapping. Neural Comput. 10, 215–234 (1998)

    Article  Google Scholar 

  9. Lazebnik, S., Raginsky, M.: Supervised learning of quantizer codebooks by information loss minimization. IEEE Trans. Pattern Anal. Mach. Intell. 31(7), 1294–1309 (2009)

    Article  Google Scholar 

  10. Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: Advances in Neural Information Processing Systems, vol. 15, pp. 833–840. The MIT Press, Cambridge (2002)

    Google Scholar 

  11. van der Maaten, L., Hinten, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    Google Scholar 

  12. Bryson, M.C.: Heavy-tailed distributions: properties and tests. Technometrics 16(1), 61–68 (1974)

    Article  MathSciNet  Google Scholar 

  13. de Bodt, C., Mulders, D., Verleysen, M., Lee, J.A.: Perplexity-free \(t\)-SNE and twice Student \(tt\)-SNE. In: Verleysen, M. (ed.) Proceedings of the 26th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2018), Bruges (Belgium), Louvain-La-Neuve, Belgium, pp. 123–128 (2018). i6doc.com

    Google Scholar 

  14. Nebel, D., Kaden, M., Villmann, A., Villmann, T.: Types of (dis\(-\))similarities and adaptive mixtures thereof for improved classification learning. Neurocomputing 268, 42–54 (2017)

    Article  Google Scholar 

  15. Biehl, M., Hammer, B., Villmann, T.: Prototype-based models in machine learning. Wiley Interdisciplinary Rev.: Cogn. Sci. 7(2), 92–111 (2016)

    Google Scholar 

  16. Cichocki, A., Amari, S.-I.: Families of alpha- beta- and gamma- divergences: flexible and robust measures of similarities. Entropy 12, 1532–1568 (2010)

    Article  MathSciNet  Google Scholar 

  17. Villmann, T., Haase, S.: Divergence based vector quantization. Neural Comput. 23(5), 1343–1392 (2011)

    Article  MathSciNet  Google Scholar 

  18. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  19. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–432 (1948)

    Article  MathSciNet  Google Scholar 

  20. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Berkeley. University of California Press (1961)

    Google Scholar 

  21. Rényi, A.: Probability Theory. North-Holland Publishing Company, Amsterdam (1970)

    MATH  Google Scholar 

  22. Kohonen, T.: Learning vector quantization. Neural Netw. 1(Suppl. 1), 303 (1988)

    Google Scholar 

  23. Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    Article  MathSciNet  Google Scholar 

  24. Emerencia, A.: Student’s \(t\)-distribution in learning vector quantization. Master’s thesis, Institute for Mathematics and Computing Science, University of Groningen (2009)

    Google Scholar 

  25. Villmann, A., Kaden, M., Saralajew, S., Villmann, T.: Probabilistic learning vector quantization with cross-entropy for probabilistic class assignments in classification learning. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 724–735. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_67

    Chapter  Google Scholar 

  26. Bunte, K., Haase, S., Biehl, M., Villmann, T.: Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences. Neurocomputing 90(9), 23–45 (2012)

    Article  Google Scholar 

  27. van der Maaten, L.: Learning a parametric embedding by preserving local structure. In: Proceedings of the 12th AISTATS, Clearwater Beach, Fl, pp. 384–391 (2009)

    Google Scholar 

  28. Grassberger, P., Procaccia, I.: Measuring the strangeness of strange attractors. Physica 9D, 189–208 (1983)

    MathSciNet  MATH  Google Scholar 

  29. Takens, F.: On the numerical determination of the dimension of an attractor. In: Braaksma, B.L.J., Broer, H.W., Takens, F. (eds.) Dynamical Systems and Bifurcations. LNM, vol. 1125, pp. 99–106. Springer, Heidelberg (1985). https://doi.org/10.1007/BFb0075637

    Chapter  Google Scholar 

  30. Theiler, J.: Satistical precision of dimension estimators. Phys. Rev. A 41, 3038–3051 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Villmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villmann, T., Kaden, M., Mohannazadeh Bakhtiari, M., Villmann, A. (2019). Appropriate Data Density Models in Probabilistic Machine Learning Approaches for Data Analysis. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11509. Springer, Cham. https://doi.org/10.1007/978-3-030-20915-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20915-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20914-8

  • Online ISBN: 978-3-030-20915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics