Abstract
Central banks are reluctant to accept cryptocurrency, because current implementations of decentralized privacy preserving transactions make it impossible to apply know your customer (KYC) and anti-money laundering (AML) procedures. In this paper, we augment a distributed privacy preserving cyptocurrency known as Monero with KYC and AML procedures. The proposed solution relies on secretly sharing of the clients’ private view keys and private transaction keys among a large number of permissioned signers (PSs). The resulting cryptocurrency maintains the notion of distributed trust while allowing a group of PSs to cooperate, collectively applying KYC and AML procedures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This scheme is implemented on the SPDZ arithmetic circuit because of implementation details.
- 2.
According to the implementation the exact term is \( P = H_s (8\cdot rA || i)G+B\), where multiplying by eight forces the rA point to be in the group base point G and || denotes byte concatenation with output index (oi). The output index prevents the generation of multiple identical stealth addresses for the same receiver (which will prevent the receiver from spending more than one output).
- 3.
The value (A, B) is translated into the x-term of that function.
- 4.
- 5.
The integrity of the result is guaranteed and malicious parties deviating from the protocol during execution should not be able to force honest parties to output an incorrect result.
References
The dai stablecoin system. https://makerdao.com/. Accessed 06 Feb 2019
Maxwell, G.: Post on bitcoin forum. https://bitcointalk.org/index.php?topic=279249.msg3013970#msg3013970. Accessed 09 Feb 2019
Tether: Fiat currencies on the bitcoin blockchain. https://tether.to. Accessed 06 Feb 2019
Swiss national bank plans to launch their own cryptocurrency, February 2018. https://www.interactivecrypto.com/swiss-national-bank-plans-launch-cryptocurrency. Accessed 27 Feb 2018
Berentsen, A., Schar, F., et al.: The case for central bank electronic money and the non-case for central bank cryptocurrencies. Federal Reserve Bank of St. Louis Review 100(2), 97–106 (2018)
Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. J. Crypt. Eng. 2(2), 77–89 (2012)
Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Submission to nist (round 2), pp. 320–337 (2009)
Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bitcoin p2p network. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 15–29. ACM (2014)
Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45472-5_31
Buchanan, B.: The bank of England is planning a bitcoin-style virtual currency – but could it really replace cash? January 2018. http://theconversation.com/the-bank-of-england-is-planning-a-bitcoin-style-virtual-currency-but-could-it-really-replace-cash-89585. Accessed 4 Jan 2018
Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and privacy using e-cash (extended abstract). In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006). https://doi.org/10.1007/11832072_10
Camenisch, J., Maurer, U., Stadler, M.: Digital payment systems with passive anonymity-revoking trustees. J. Comput. Secur. 5(1), 69–89 (1997)
Carney, M.: The future of money. In: Scottish Economics Conference. Edinburgh University, March 2018. https://www.bankofengland.co.uk/-/media/boe/files/speech/2018/the-future-of-money-speech-by-mark-carney.pdf. Accessed 2 Mar 2019
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. arXiv preprint arXiv:1505.06895 (2015)
De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_13
Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24676-3_1
Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous payments. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–98. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4_5
Georgacopoulos, C.: Banks and the crypto industry: Asia, April 2018. https://cointelegraph.com/news/banks-and-the-crypto-industry-asia. Accessed 18 Apr 2018
Gupta, S., Lauppe, P., Ravishankar, S.: A blockchain-backed central bank cryptocurrency (2017)
Harn, L., Lin, C.: Strong (n, t, n) verifiable secret sharing scheme. Inf. Sci. 180(16), 3059–3064 (2010)
Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tumblebit: an untrusted bitcoin-compatible anonymous payment hub. In: Network and Distributed System Security Symposium (2017)
Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Technical report, 2016–1.10. Zerocoin Electric Coin Company (2016)
Ibrahim, M.H., Ali, I., Ibrahim, I., El-Sawi, A.: A robust threshold elliptic curve digital signature providing a new verifiable secret sharing scheme. In: 2003 IEEE 46th Midwest Symposium on Circuits and Systems, vol. 1, pp. 276–280. IEEE (2003)
Jedusor, T.E.: Mimblewimble (2016)
Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of anonymity in zcash. arXiv preprint arXiv:1805.03180 (2018)
Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 830–842. ACM (2016)
Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_9
Maxwell, G., Poelstra, A.: Borromean ring signatures (2015)
Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140. ACM (2013)
Miyaji, A., Nishida, S.: A scalable multiparty private set intersection. Network and System Security. LNCS, vol. 9408, pp. 376–385. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25645-0_26
Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)
Ning, C., Xu, Q.: Multiparty computation for modulo reduction without bit-decomposition and a generalization to bit-decomposition. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_28
Noether, S., Mackenzie, A., Monero-Core-Team: Ring confidential transactions, February 2016. https://lab.getmonero.org/pubs/MRL-0005.pdf
Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18 (2016)
Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_9
Quesnelle, J.: On the linkability of zcash transactions. arXiv preprint arXiv:1712.01210 (2017)
Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39884-1_2
Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for bitcoin. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_20
van Saberhagen, N.: Cryptonote v 2.0, October 2013. https://cryptonote.org/whitepaper.pdf
Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 459–474. IEEE (2014)
Suberg, W.: Malaysian central bank: Id now needed for any crypto exchange transaction, February 2018. https://cointelegraph.com/news/malaysian-central-bank-id-now-needed-for-any-crypto-exchange-transaction. Accessed 28 Feb 2018
de Vilaca Burgos, A., de Oliveira Filho, J.D., Suares, M.V.C., de Almeida, R.S.: Distributed ledger technical research in central bank of brazil (2017)
WĂĽst, K., Kostiainen, K., Capkun, V., Capkun, S.: PRCash: fast, private and regulated transactions for digital currencies
Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Puzis, R., Barshap, G., Zilberman, P., Leiba, O. (2019). Controllable Privacy Preserving Blockchain. In: Dolev, S., Hendler, D., Lodha, S., Yung, M. (eds) Cyber Security Cryptography and Machine Learning. CSCML 2019. Lecture Notes in Computer Science(), vol 11527. Springer, Cham. https://doi.org/10.1007/978-3-030-20951-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-20951-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-20950-6
Online ISBN: 978-3-030-20951-3
eBook Packages: Computer ScienceComputer Science (R0)